
© 2021 Arm

William Wang, Arm Research
22 June 2021

Architectural Support for
Persistent Memory

VCEW 2021

2 © 2021 Arm

Executive Summary
• NVM uses

• More memory (denser but slower, i.e., far memory) and persistent memory

• Persistent use -> software changes
• Do we have sufficient support in the Arm architecture for programming persistent memory?

• Problems
• Persist ordering across threads (concurrency on PM – locking, lock-free and TM)

• Persist ordering within a thread (weak memory models)

• Solutions
• Persistent transitive stores (for lock-free concurrency on PM and synchronization primitives)

• Battery-backed buffers (for concurrency and performance, also sequential programs)

• Other challenges
• Failure atomicity, persistent addressing

Note: Persistent Memory (PM) refers to the persistent use of non-volatile memory (NVM)

3 © 2021 Arm

NVM Augments SRAM, DRAM, NOR, and NAND
In Embedded, Client, and Infrastructure

Arm MUSCA-S1 Board with MRAM at 28nm in 2019 Nokia Asha Smartphone with Micron PCM in 2012 CXL Connected Persistent Memory in Infrastructure

4 © 2021 Arm

Non-Volatile Memory Opportunities

Core

L1
i

L1
d

L2 LL
C

Ct
rlX

Off-chip Usage

Larger & cheaper DRAM

Ultra-fast Storage

Converged Memory & Storage

On-chip Usage

LL
C

Larger Caches

Core

SR
AM

Fl
as

h
Mem

Unify Flash & SRAM

Application-profile
(servers, phones, ..)

Embedded-profile
(energy harvesters)

PEs

SR
AM

Mem

ASIC
(AI accelerators)

Huge On-chip Mem

5 © 2021 Arm

Persistent Use
Beyond ’More Memory’

• Byte addressable, denser than DRAM
• Today: new memory technologies

offering density and cost improvements
over DRAM

• Tomorrow: unlock performance through
single memory for storage and compute

TCO/Capacity
§ Endurance
§ Latency
§ Volatility

DRAM

NVM NVMDRAM

Persistency
§ Failure atomicity
§ Persist ordering
§ Persistent addressing
§ Crash recovery
§ Programming models
§ ISA & uarch support

More Mem
Denser than DRAM

Persistent Mem
Non-Volatile

Unlock more perf out
of cheaper memory

In-mem DBs, then
other apps

- Data analytics

- ML training

- Finance

- HPC

Today Tomorrow

© 2021 Arm

Memory Persistency

Do we have sufficient support in the Arm ISA for
programming persistent memory?

7 © 2021 Arm

System Assumption

§ Point of Persistence (PoP) at the
persistent memory module or the
memory controller WPQ
• Contents in the power-fail protection

domain will be saved upon power failure

§ Caches and cores are still in the
volatile domain
• Contents will be lost upon power failure

§ Persistency < Consistency (behind)
• Stores need to be drained from volatile

caches to PoP explicitly by software to
sync persistency w. consistency

Core 0 Core 1

L1 L1

L2 L2

L3

Memory
Controller

Persistent Memory

WPQ
Power-fail
protection
domain (ADR)
x86

arm

Consistency

Persistency

PoP: Point of Persistence

ADR : Asynchronous DRAM Refresh

WPQ: Write Pending Queue

Decoupled Persistency and Consistency

8 © 2021 Arm

Architectural Support to Sync Visibility & Persistency

Core L1D L2 LLC MC PM

PoP PoDPPoCV

DC CVAP

DC CVADP

PoCV: Point of Concurrent Visibility

PoP: Point of Persistence

PoDP: Point of Deep Persistence

ADR : Asynchronous DRAM Refresh

DSB: Data Synchronization Barrier

DMB: Data Memory Barrier

ADR

PoPPoP

Armx86

DC CVAP in Armv8.2-A and DC CVADP in Armv8.5-A

Barrier (DSB) to guarantee completion of DC CVA[D]P cache maintenance operations

Barrier (DMB) to order DC CVA[D]P cache maintenance operations

9 © 2021 Arm

Global Visibility Order

P0
STR W0,[X1]
STR W2,[X3]

time

b: Wy = 1

a: Wx = 1

Thread 0

po

P0
STR W0,[X1]
DMB.ST
STR W2,[X3]

b: Wy = 1

a: Wx = 1

Thread 0

dmb

Global Visibility

time

Global Visibility

Wx = 1 Wy = 1 Wx = 1 Wy = 1

DMB: Data Memory Barrier

DMB.ST: Store barrier

10 © 2021 Arm

View of the NVM: Persist Order

P0
STR W0,[X1]
STR W2,[X3]

time

b: Wy = 1

a: Wx = 1

Thread 0

po

P0
STR W0,[X1]
DMB.ST
STR W2,[X3]

b: Wy = 1

a: Wx = 1

Thread 0

dmb

Global Visibility

time

Global Visibility

Wx = 1Wy = 1

Persistence Persistence

Wx = 1 Wy = 1

Wy = 1 Wx = 1Wx = 1 Wy = 1

11 © 2021 Arm

Enforcing Persist Order

P0
STR W0,[X1]
DC.CVAP [X1]
DSB
STR W2,[X3]

time

Global Visibility

Wx = 1 Wy = 1

Persistence

Wx = 1 Wy = 1

b: Wy = 1

a: Wx = 1

Thread 0

dmb pers

P0
STR W0,[X1]
DC.CVAP [X1]
DSB

P1
LDR W0,[X1]
DMB
STR W2, [X3]
DC.CVAP [X3]
DSB

c: Wy = 1

a: Wx = 1

Thread 0

dmb

Thread 1

b: Rx = 1
rfe

Global Visibility

Wx = 1 Wy = 1Rx = 1

Persistence

Wx = 1 Wy = 1

pers?

pers?

DSB: Data Synchronization Barrier

Strong Persist Atomicity [*]

𝑆!" ≤# 𝑀!
$ → 𝑆!" ≤% 𝑀!

$

𝑀!
" ≤# 𝑆!

$ → 𝑀!
" ≤% 𝑆!

$

[*] Ref: Memory Persistency, ISCA’14

12 © 2021 Arm

Challenge: Data Loss In Concurrent Linked List

• Producer B observes A’s updates, but
cannot / does not enforce the persists

• The inter-thread“read of non-
persistent write” problem

1. if(CAS(&last->next, next, node)) {
2. Persist(&last->next);
3. DSB
4. }

1

next

2

next

3

next

4

nextCAS

CAS
Persist

Persist

Producer A

insert
Producer B

insert

13 © 2021 Arm

Solution
• Basic idea: delay consumer’s persist

operation until producer’s persist
operation is done

• Various arch options
• Delay producer’s visibility until persistence is

done

P0
STR W0,[X1]
DC.CVAP [X1]
DSB

P1
LDR W0,[X1]
DMB
STR W2, [X3]
DC.CVAP [X3]
DSB

c: Wy = 1

a: Wx = 1

Thread 0

dmb

Thread 1

b: Rx = 1
rfe

Global Visibility

Persistence

Wx = 1

Wx = 1 Wy = 1Rx = 1

Wy = 1

14 © 2021 Arm

Solution
• Basic idea: delay consumer’s persist

operation until producer’s persist
operation is done

• Various arch options
• Delay producer’s visibility until persistence is

done

• New instructions for combining persist
and store for synchronizing stores

P0
STR W0,[X1]
DC.CVAP [X1]
DSB

P1
LDR W0,[X1]
DMB
STR W2, [X3]
DC.CVAP [X3]
DSB

c: Wy = 1

a: Wx = 1

Thread 0

dmb

Thread 1

b: Rx = 1
rfe

Global Visibility

Wx = 1 Wy = 1Rx = 1

Persistence

Wx = 1Wy = 1

More info: Persistent Atomics for Implementing Durable Lock-Free Data Structures for Non-Volatile Memory, SPAA’19

15 © 2021 Arm

Persistent Transitive Stores to Synchronize Visibility & Persistency

Core
1 L1D MC PM

PoP PoDPPoCV

DC CVAP

DC CVADP

PoCV: Point of Concurrent Visibility

PoP: Point of Persistence

PoDP: Point of Deep Persistence

Core
0 L1D

LLC

MC DRAM

Pe
rs

is
te

nt
 T

ra
ns

iti
ve

 S
to

re
s

A load from a persistent
memory location will only
see data that is persistent

16 © 2021 Arm

In Software

• Readers persist all locations read -> bloat, slow
• Tell reader to persist / to wait
• Single out-of-band location -> scalability??
• Multiple out-of-band locations -> hello mini-

STM ?!?
• Borrow payload -> steals payload bits

P0 P1

persist(X)
CAS(X ,P, ..)
produce(P)

modify(Q, p)
persist(Q)

p= read(X)

17 © 2021 Arm

In Software

• Readers persist all locations read -> bloat, slow
• Tell reader to persist / to wait
• Single out-of-band location -> scalability??
• Multiple out-of-band locations -> hello mini-

STM ?!?
• Borrow payload -> steals payload bits

P0 P1

persist(X)
CAS(X ,P, ..)
produce(P)

modify(Q, p)
persist(Q)

p= read(X)
persist(X)

18 © 2021 Arm

In Software

• Readers persist all locations read -> bloat, slow
• Tell reader to persist / to wait
• Single out-of-band location -> scalability??
• Multiple out-of-band locations -> hello mini-

STM ?!?
• Borrow payload -> steals payload bits

P0 P1

persist(X)
CAS(X ,P, ..)
produce(P)

modify(Q, p)
persist(Q)

p= read(X)
check(Y)

notify(Y)

rfe

“There is always a software way around the problem if you are
aware of it, but that is not a reliable solution. The best solution
is to design processors so that a load from a persistent memory
location will only see data that is persistent.”

- Mario Wolczko and Bill Bridge (Oracle)

Source: https://medium.com/@mwolczko/non-volatile-memory-and-java-part-2-c15954c04e11

19 © 2021 Arm

Summary: Persistent Transitive Stores

• Persistent memory introduces a new level of reasoning
• Arm ISA extensions for flushing to point of (deep) persistence: DC CVA[D]P

• Armv8.2-A DC CVAP, Armv8.5-A DC CVADP

• Simple persist operations do not allow transitive ordering of persists
• Tricky case closing store of lock-free section
• Extending the ISA (and µarch) to synchronize visibility and persist orders

20 © 2021 Arm

Architectural Support for Memory

Load/Store Exclusives Barriers [A|L] Atomics[N|F] PM MTE

Persistent Transitive Stores

CMO

HTM

Concurrent Atomicity and Ordering

21 © 2021 Arm

• Lock-free data structures for filesystems, databases, k-v stores, and caching tiers

• Synchronization primitives in languages, libraries, runtimes and compilers for PM

Use Cases for Persistent Atomics

Software Stacks Synchronization Primitives Examples

Applications Locks, lock-free atomics, STM MySQL, Tomcat, Nginx (sync intensive)

Runtimes • Interpret language functions to runtime builtin implementations
• Concurrent GC in runtime implementations

• Synchronized in Java to intrinsic lock or monitor lock
• v8, OpenJDK, go-runtime

Kernels spinlock, ticket spinlock, mcs queued spinlock, clh queued spinlock
mutex, semaphore, reader-writer lock, read-copy-update

Linux kernel

Languages Locks and atomics: Java, C11/C++, C#, Golang, JS, NodeJS, WASM;
TM: C/C++

Synchronized in Java/C++, lock in C#

Libraries mutexes, semaphores pthreads, Windows threads

Compilers atomics in languages get mapped to compiler builtin implementations GCC __atomic_ Builtins, LLVM __atomic_

ISA PCAS[A|L], PSWP[A|L], P[LD|ST]ADD[A|L] Persistent atomics

Data Structures Example Implementations Applications

B+ Trees BZTree, and Crab-tree, Masstree, noveLSM, FAST-FAIR B+-Tree, WORT,
FPTree, NV-tree, WB+-Tree, B+-Tree, CDDS B-Tree

Filesystems and databases: Microsoft Hekaton, HANA, Timesten,
SQLite, LevelDB/RocksDB/Cassandra (LSM Tree), NOVA, ext4-DAX

Hashmaps NVC-hashmap, CCEH, LevelHashing, Dali, PFHT Key-value stores: Redis, Memcached, Pelikan, Tair

Queues LogQueue Persistent log queues: Oracle DB, SQL server

Skiplists NV-skiplist Databases and KV stores: MemSQL

22 © 2021 Arm

Concurrency on Persistency Memory : It’s Complicated

“ We also explain that atomic
operations cannot be used inside
a [PMDK] transaction while
building lock-free algorithms
without transactions. This is a
very complicated task if your
platform does not support
eADR.”

Source: Programming Persistent Memory (Steve Scargall)
https://link.springer.com/chapter/10.1007/978-1-4842-4932-1_14

© 2021 Arm

Memory Consistency

Why should sequential application developers
care about memory consistency?

24 © 2021 Arm

Example: Adding a Node to a Linked List

root Node
headp

newNode

1

nextp

23

3

root Node
headp

newNode

1

nextp

23

3

Allocate

Initialize

Publish

PM Allocate

Initialize & Persist
Publish & Persist

25 © 2021 Arm

eADR Simplifies Persistent Programming, but Not Sufficient

Core 0 Core 1

L1 L1

L2 L2

L3

MC

PM

Power-fail
protection
domain
(eADR)

• CPU cache hierarchy in the power-
fail protection domain (PoP)
• Contents will be saved upon power

failure

• Persistency == Consistency
• Concurrent programs ✓
• Is that sufficient for sequential

programs?
• Globally visible stores in the cache

hierarchy will be persistent too
• No need to DC CVAP
• No need to use barriers?

– No, simple sequential programs need to
reason about memory consistency

Consistency
Persistency

Note: eADR power-fail protection domain can differ due to inclusiveness of the cache hierarchy

aka. Strict Persistency

26 © 2021 Arm

Arm’s Weak Memory Model: W->W Reordering Allowed

P1 can read a stale copy of A, as str flag=0 can be made
globally visible before str A=1.

Use DMB.st (or stlr) between the two stores on P0 to
serialize the two stores.

DMB.ST

DMB.ST

Even though caches are in the PoP, no need to PERSIST, but
FENCES are still needed.

Non-TSO needs the first DMB.ST to prevent store reordering.

TSO & non-TSO may need the second DMB.ST for global
visibility due to store buffering.

P0
str A=1
str flag=0

P1
while(flag==1){};
print A

Can we remove both persist and fences?

27 © 2021 Arm

Enforcing Failure Atomicity in Language-Level Persistency Models
Undo logging for failure atomicity

FASE
{
STORE log-A;
DCCVAP log-A;
DMB;
STORE A;
DCCVAP A;

STORE log-B;
DCCVAP log-B;
DMB;
STORE B;
DCCVAP B;
DSB;

}

FASE
{
Store A;
Store B;

}

FASE
{
ST/NP log-A;
STLR A;

ST/NP log-B;
STLR B;

}

Bank balance transfer example Failure atomicity w. Armv8.2-A Failure atomicity with eADR on Arm

Despite compilers can
instrument, barriers are
expensive.

FASE
{
STORE log-A;
STORE A;
STORE log-B;
STORE B;

}

Failure atomicity with eADR+ on Arm

More info: Language Support for Memory Persistency, IEEE MICRO Top-picks 2019

Can we remove barriers?

28 © 2021 Arm

Software Porting from TSO to WMM
Barriers are hard to get right

• DBT (x86->Arm)
• Need to add fences (STLR/LDAR, DMB)

– Hard problem to identify all cases, if not overusing

• Applications porting from TSO -> WMM
• Recompile, if w. language-level consistency model
• Add fences (STLR/LDAR, DMB), if not

– Tedious, easy to overuse or underuse barriers

• Silicon can support TSO and WMM
• Set a register to get TSO dynamically
• So the code in the middle would run okay

// Producer
*data = 1;
atomic_store_explicit(&flag, 1, memory_order_release)

// Consumer
if (atomic_load_explicit(&flag, 1, memory_order_acquire))

assert(*data != 0);

// Producer
mov 0(rdx),rax
mov 8(rdx),rbx

// Consumer
mov rax,8(rdx)
mov rbx,0(rdx)

// Producer
str r1,[r2]
stlr r4,[r3]

// Consumer
ldar r1,[r3]
ldr r4,[r2]

armv8 x86

x86 to armv8

A compiler targeting either architecture directly would produce
correct code. However, binary translation that does not account
for differences in consistency models would lead to the invalid
outcome becoming observable!
DBT needs to insert fences, otherwise tricky bugs get introduced.
Or, processors support TSO as well.

// Producer
str r1,[r2]
str r4,[r3]

// Consumer
ldr r1,[r3]
ldr r4,[r2]

WMM
RC

TSO

29 © 2021 Arm

Extending Power-fail Protection to Store Buffers

Core Core

L1 L1

Power-fail
protection
domain
(eADR+)
Persistency
domain

• CPU store buffers in the power-fail
protection domain (PoP) too
• Contents will be saved to PoP

• Stores are executed OoO but
committed in order
• No need to order w. barriers explicitly

• Consistency == Persistency
• Concurrent programs ✓

• Persistency > Consistency (ahead)
• Persistency at SB

– WMM stores get persisted in order, despite can be made visible OoO,
barriers would have already been needed for concurrency so okay.

• Sequential programs continue to
execute correctly without CPU barriers

– Language support may be needed to prevent compiler reordering

SB SB Store
forwarding

Consistency
domain

Other-MCA

[Arm|x86]

Consistency

Persistency

FASE
{
STORE log-A;
STORE A;
STORE log-B;
STORE B;

}

Note: For simplicity of illustration, store buffer may include other buffers on the store path in
between core and L1D, e.g., merge buffer

30 © 2021 Arm

Microarchitectural Support to Sync Visibility & Persistency: BBB

Core
SB

L1D L2 LLC MC PM

LOAD

STORE

PoP PoDPPoCVPoSV

DC CVAP

DC CVADP

x86Arm
BBB

MRAM/CeRAM

PoSV: Point of Sequential/Local Visibility

PoCV: Point of Concurrent/Global Visibility

PoP: Point of Persistence

PoDP: Point of Deep Persistence

BBB: Battery-Backed Buffers

ADReADR

<= Microarchitectural Support

Architectural Support =>

PB

More BBB µarch details in HPCA’21

Global VisibilityLocal Visibility

31 © 2021 Arm

CPU Microarchitectural Support for Memory

Cache
1976 I/D$

OoOE
Rename/ROB/

Commit

Store buffer Multicores
Coherence
Consistency
Synchronizations

PM MTE HTM

Battery-Backed Buffers

VM
MMU

1962 1968 1990 2001 20191990s

Baseline BBB can be implemented w/o microarchitectural modifications

32 © 2021 Arm

Summary: Battery-Backed Buffers

• Battery-backed buffers, instead of
the on-chip cache hierarchy
• Reduce energy, by two orders of magnitude vs. eADR
• Improve performance and simplify programming vs. v8.2

– both DC CVAP and DSB can be eliminated

• Sequential persistency, in addition to
strict persistency
• Persistency == Consistency (strict)
• Relaxed -> Strict (eADR) -> Sequential

(BBB)

[*] https://community.arm.com/developer/research/b/articles/posts/simplifying-persistent-programming-with-
microarchitectural-support

Programmability Sequential Programs Concurrent Programs

DC CVAP DSB DC CVAP DSB

eADR ✓ ✓ ✓

BBB ✓ ✓ ✓ ✓

Total Energy Cost Mobile Class Server Class

eADR 46.5 mJ (317X of BBB) 550 mJ (709X of BBB)

BBB [32 entries] 145 µJ 775 µJ

More BBB µarch details in HPCA’21

© 2021 Arm

Summary

34 © 2021 Arm

Summary
• Problems

• Persist ordering across threads
• Persist ordering within a thread

• Solutions [*]
• Persistent transitive stores
• Battery-backed buffers

• Other challenges

Persistent transitive stores Battery-backed buffers
Performance
Improvement Small Big
Programmability
Concurrency Yes Yes
Failure atomicity No No
Persist ordering Yes Yes
Persistent addressing No No
Persistent MM No No
Portability High Low
Implementation
ISA architecture Yes No
System architecture No Yes
Microarchitecture Yes Yes
Interconnect Yes No
Operating System No Yes
Compiler& toolchain Yes No

Persist Ordering Sequential Programs Concurrent Programs

DC CVAP DSB DC CVAP DSB

Persistent transitive
stores

✓ ✓

Battery-backed buffers ✓ ✓ ✓ ✓

[*] The solutions are proposals rather than committed Arm architectural features at this stage

© 2021 Arm

Other Persistent
Memory Programming

Challenges

36 © 2021 Arm

Persistent Memory Programming Challenges
• Persist ordering

• Relaxed & strict memory persistency models [arch & uarch]

• Failure atomicity
• PSTM [sw]
• HW logging [uarch & arch]

• Persistent addressing
• Persistent pointers [sw & arch]
• Pointer swizzling at crash recovery [sw]

• Persistent memory management
• Metadata crash consistency, GC [sw]

• Concurrency
• Persistent transitive stores [arch]
• PHTM/PSTM [uarch/sw]
• Locking [sw]

Se
qu

en
tia

lP
ro

gr
am

s

Co
nc

ur
re

nt
Pr

og
ra

m
s

M
-c

la
ss

A-
cl

as
s

M
-c

la
ss

37 © 2021 Arm

Evolution of Memory Models: Consistency and Persistency

WMM
Dubois et.al.
Arm
Power

RV

PC
Goodman

x86
RV

RC
Gharachorloo
et.al.
Arm

SC-DRF
Adve et.al.
Java

SC++
Gharachorloo
et.al.
MIPS

Epoch
SOSP’09
Arm

x86
Power

Strand
ISCA’20
ISCA’14

Explicit
ISCA’21

Strict
HPCA’21
ASPLOS’21
X86

SC
Lamport

1979 1986 1989 1991 20091990 2020 2021

(L)RP
SPAA’19

TopPicks’19
ASPLOS’20

2019

Note: PC differs w. x86-TSO on store atomicity but same ordering.

Sequential
HPCA’21

Consistency Persistency

LRC
Keleher
et.al.

1992

© 2021 Arm

Thank You
Danke

Gracias
谢谢

ありがとう
Asante
Merci

감사합니다
ध"यवाद

Kiitos
ارًكش

ধন#বাদ
הדות

Thanks Richard Grisenthwaite, Nigel Stephens, Robert Dimond, Stuart Biles, Matt Horsnell, Thomas
Grocutt, Stephan Diestelhorst, Wendy Elsasser, David Weaver, Nikos Nikoleris, Andreas Sandberg,
Joseph Yiu, Rod Crawford, Andrew Sloss, Mitch Ishihara, Dave Rodgman, Gustavo Petri, Jade Alglave,
Will Deacon, Alex Waugh, Ola Liljedahl, Magnus Bruce, Stefano Ghiggini, Luca Nassi, Bobby Batacharia,
Travis Walton, David Bull, Shidhartha Das, Shiyou Huang, Sivert Sliper, Prakash Ramrakhyani,
Mohammad Alshboul, Mike Filippo, Gagan Gupta, Jay Lorch, Bret Toll, Ben Chaffin, Nagi Aboulenein,
Guoyun Zhu, Jonathan Halliday, Hans-J. Boehm, Pedro Ramalhete, Virendra Marathe, and Mario
Wolczko for their valuable feedback and insightful discussions. Thanks my collaborators Thomas
Wenisch, Peter Chen, Satish Narayanasamy, Yan Solihin, James Tuck, Geoff Merrett, Alex Weddell, Boris
Grot for very insightful discussions over the years.

