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View of the NVM: Persist Order  
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Enforcing Persist Order
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Challenge: Data Loss In Concurrent Linked List

• Producer B observed A’s updates, but 
cannot / does not enforce the persists

• Loss of transitivity

1. if(CAS(&last->next, next, node)) {
2. Persist(&last->next);
3. DSB
4. }

1

next

2

next

3

next

4

nextCAS

CAS
Persist

Persist

Producer A

insert
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insert

Ref: Valois 1995, Lock-Free Linked Lists Using Compare-and-Swap. 
For two other problems similar to this one.
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Solution
• Basic idea: delay consumer’s persist 

operation until producer’s persist 
operation is done

• Various arch options
• Delay producers visibility until persistence is 

done
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Solution
• Basic idea: delay consumer’s persist 

operation until producer’s persist 
operation is done

• Various arch options
• Delay producers visibility until persistence is 

done
• Delay all consumer’s persists
• Delay dependent consumer persists

• New instructions for combining persist 
and store for critical last publishing 
store
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In Software

• Readers persist all locations read -> bloat, slow
• Tell reader to persist / to wait
• Single out-of-band location -> scalability??
• Multiple out-of-band locations -> hello mini-

STM ?!?
• Borrow payload -> steals payload bits

• Wang, T., Levandoski, J. and Larson, P.A., 2018, April. Easy 
lock-free indexing in non-volatile memory. In 2018 IEEE 
34th International Conference on Data Engineering (ICDE)
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In Software

• Readers persist all locations read -> bloat, slow
• Tell reader to persist / to wait
• Single out-of-band location -> scalability??
• Multiple out-of-band locations -> hello mini-

STM ?!?
• Borrow payload -> steals payload bits
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lock-free indexing in non-volatile memory. In 2018 IEEE 
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Summary
• Persistent memory introduces a new level of reasoning
• Arm ISA extensions for flushing to point of persistence: DC CVAP

• Simple persist operations do not allow transitive ordering of persists
• Tricky case closing store of lock-free section
• Extending the ISA (and uarch) to synchronize visibility and persist orders

• Next: persistency memory model extensions
• Next: performance graphs etc


