
SPAA’19
24th June 2019

Persistent Atomics for
Implementing Durable Lock-

Free Data Structures for NVM
William Wang, Stephan Diestelhorst

Arm Research

2 © 2019 Arm Limited

Global Visibility Order

P0
STR W0,[X1]
STR W2,[X3]

time

b: Wy = 1

a: Wx = 1

Thread 0

po

P0
STR W0,[X1]
DMB.ST
STR W2,[X3]

b: Wy = 1

a: Wx = 1

Thread 0

dmb

Global Visibility

time

Global Visibility

Wx = 1 Wy = 1 Wx = 1 Wy = 1

3 © 2019 Arm Limited

View of the NVM: Persist Order

P0
STR W0,[X1]
STR W2,[X3]

time

b: Wy = 1

a: Wx = 1

Thread 0

po

P0
STR W0,[X1]
DMB.ST
STR W2,[X3]

b: Wy = 1

a: Wx = 1

Thread 0

dmb

Global Visibility

time

Global Visibility

Wx = 1Wy = 1

Persistence Persistence

Wx = 1 Wy = 1

Wy = 1 Wx = 1Wx = 1 Wy = 1

4 © 2019 Arm Limited

Enforcing Persist Order

P0
STR W0,[X1]
DC.CVAP [X1]
DSB
STR W2,[X3]

time

Global Visibility

Wx = 1 Wy = 1

Persistence

Wx = 1 Wy = 1

b: Wy = 1

a: Wx = 1

Thread 0

dmb pers

P0
STR W0,[X1]
DC.CVAP [X1]
DSB

P1
LDR W0,[X1]
DMB
STR W2, [X3]
DC.CVAP [X3]
DSB

c: Wy = 1

a: Wx = 1

Thread 0

dmb

Thread 1

b: Rx = 1
rfe

Global Visibility

Wx = 1 Wy = 1Rx = 1

Persistence

Wx = 1 Wy = 1

pers?

pers?

5 © 2019 Arm Limited

Challenge: Data Loss In Concurrent Linked List

• Producer B observed A’s updates, but
cannot / does not enforce the persists

• Loss of transitivity

1. if(CAS(&last->next, next, node)) {
2. Persist(&last->next);
3. DSB
4. }

1

next

2

next

3

next

4

nextCAS

CAS
Persist

Persist

Producer A

insert
Producer B

insert

Ref: Valois 1995, Lock-Free Linked Lists Using Compare-and-Swap.
For two other problems similar to this one.

6 © 2019 Arm Limited

Solution
• Basic idea: delay consumer’s persist

operation until producer’s persist
operation is done

• Various arch options
• Delay producers visibility until persistence is

done

P0
STR W0,[X1]
DC.CVAP [X1]
DSB

P1
LDR W0,[X1]
DMB
STR W2, [X3]
DC.CVAP [X3]
DSB

c: Wy = 1

a: Wx = 1

Thread 0

dmb

Thread 1

b: Rx = 1
rfe

Global Visibility

Persistence

Wx = 1

Wx = 1 Wy = 1Rx = 1

Wy = 1

7 © 2019 Arm Limited

Solution
• Basic idea: delay consumer’s persist

operation until producer’s persist
operation is done

• Various arch options
• Delay producers visibility until persistence is

done
• Delay all consumer’s persists
• Delay dependent consumer persists

• New instructions for combining persist
and store for critical last publishing
store

P0
STR W0,[X1]
DC.CVAP [X1]
DSB

P1
LDR W0,[X1]
DMB
STR W2, [X3]
DC.CVAP [X3]
DSB

c: Wy = 1

a: Wx = 1

Thread 0

dmb

Thread 1

b: Rx = 1
rfe

Global Visibility

Wx = 1 Wy = 1Rx = 1

Persistence

Wx = 1Wy = 1

8 © 2019 Arm Limited

In Software

• Readers persist all locations read -> bloat, slow
• Tell reader to persist / to wait
• Single out-of-band location -> scalability??
• Multiple out-of-band locations -> hello mini-

STM ?!?
• Borrow payload -> steals payload bits

• Wang, T., Levandoski, J. and Larson, P.A., 2018, April. Easy
lock-free indexing in non-volatile memory. In 2018 IEEE
34th International Conference on Data Engineering (ICDE)

P0 P1

persist(X)
CAS(X ,P, ..)
produce(P)

modify(Q, p)
persist(Q)

p= read(X)

9 © 2019 Arm Limited

In Software

• Readers persist all locations read -> bloat, slow
• Tell reader to persist / to wait
• Single out-of-band location -> scalability??
• Multiple out-of-band locations -> hello mini-

STM ?!?
• Borrow payload -> steals payload bits

• Wang, T., Levandoski, J. and Larson, P.A., 2018, April. Easy
lock-free indexing in non-volatile memory. In 2018 IEEE
34th International Conference on Data Engineering (ICDE)

P0 P1

persist(X)
CAS(X ,P, ..)
produce(P)

modify(Q, p)
persist(Q)

p= read(X)
persist(X)

10 © 2019 Arm Limited

In Software

• Readers persist all locations read -> bloat, slow
• Tell reader to persist / to wait
• Single out-of-band location -> scalability??
• Multiple out-of-band locations -> hello mini-

STM ?!?
• Borrow payload -> steals payload bits

• Wang, T., Levandoski, J. and Larson, P.A., 2018, April. Easy
lock-free indexing in non-volatile memory. In 2018 IEEE
34th International Conference on Data Engineering (ICDE)

P0 P1

persist(X)
CAS(X ,P, ..)
produce(P)

modify(Q, p)
persist(Q)

p= read(X)
check(Y)

notify(Y)

rfe

11 © 2019 Arm Limited

Summary
• Persistent memory introduces a new level of reasoning
• Arm ISA extensions for flushing to point of persistence: DC CVAP

• Simple persist operations do not allow transitive ordering of persists
• Tricky case closing store of lock-free section
• Extending the ISA (and uarch) to synchronize visibility and persist orders

• Next: persistency memory model extensions
• Next: performance graphs etc

