
1

Strand Persistency
V. Gogte∗, W. Wang†, S. Diestelhorst†, P. M. Chen∗, S. Narayanasamy∗, T. F. Wenisch∗

∗University of Michigan {vgogte,pmchen,nsatish,twenisch}@umich.edu
†ARM {william.wang,stephan.diestelhorst}@arm.com

I. INTRODUCTION

Persistent memory (PM) technologies, such as Intel and
Micron’s 3D XPoint, are here—OEMs are already evaluating
engineering samples and volume shipments are expected in
early 2019. PMs aim to combine byte-addressability of DRAM
and durability of storage devices. Unlike traditional block-
based storage devices, such as hard disks and SSDs, PMs
can be accessed using a byte-addressable load-store interface,
avoiding the expensive software layers required to access
storage, and allowing for fine-grained PM manipulation.

As PMs are durable, they retain data across failures such
as power interruptions and program crashes. Upon failure,
the volatile program state in hardware caches, registers, and
DRAM is lost. In contrast, PM retains its contents—a recov-
ery process can inspect these contents, reconstruct required
volatile state, and resume program execution.

Several persistency models have been proposed in the past
to enable writing recoverable software, both in hardware [1],
[2] and programming languages [3]–[7]. Like prior works, we
refer to the act of completing a store operation to PM as a
persist. Persistency models enable two key properties. First,
they allow programmers to reason about the order in which
persists are made. Similar to memory consistency models,
which order visibility of shared memory writes, memory
persistency models govern the order of persists to PM. Second,
they enable failure-atomicity for a set of persists. In case of
failure, either all or none of the updates within a failure-atomic
set are visible to recovery.

Recent works [3], [4] extend the memory models of high-
level languages, such as C++ and Java, with persistency
semantics. Specifically, ATLAS [3], Coupled-SFR [4], and
Decouped-SFR [4] employ synchronization primitives in C++
to prescribe the ordering and failure-atomicity of PM op-
erations. ATLAS ensures failure-atomicity of PM updates
within outermost critical-sections—program regions bounded
by lock and unlock operations. Coupled- and Decoupled-
SFR designs assure failure-atomicity for synchronization-free
regions—program regions delimited by synchronization oper-
ations, such as acquire and release. These models implement
undo logging to ensure failure-atomicity of PM updates. As
shown in Figure 1b, an undo logging mechanism creates undo
logs in PM that preserve old PM values before they are
overwritten. On a failure, these undo logs are used to roll back
partial PM updates. Note that undo logging exposes high PM
write latency during execution as undo logs must be created
and flushed to PM before in-place updates may be made.

These persistency models ensure that PM updates within a
failure-atomic region become persistent in an order consistent
with the constraints on when they may become visible, as
shown in Figure 1c. For instance, Intel x86 systems employ

CLWB (or CLFLUSHOPT in older systems) instruction to explic-
itly flush dirty cache lines to the memory controller and a
subsequent SFENCE instruction to order ensuing stores with
prior CLWBs and stores. Ideally, logging requires a pairwise
ordering between logs and over-writing stores for correct
recovery. In Figure 1c, SFENCE is required to order log creation
and flush to PM with a subsequent store to a memory location
A. Unfortunately, SFENCE enforces additional ordering con-
straints on persists that are not required for ensuring correct
recovery. For instance, in Figure 1c, SFENCE additionally
orders log creation and flush to LA with log creation and flush
to LB. These ordering constraints limit persist concurrency.

We propose employing strand persistency [8] to minimally
constrain orderings on persists to PM. Strand persistency
decouples persist ordering from visibility of PM operations
enforced by memory consistency models. It provides two key
primitives—a persist barrier that explicitly enforces ordering
constraints on persists, and a strand barrier that removes or-
dering constraints on subsequent persists. While memory con-
sistency barriers enforce visibility order of memory operations,
persist barriers enforce the order in which persists propagate to
PM. In contrast, a strand barrier removes ordering constraints
on subsequent persists. Persists after a strand barrier can
propagate to PM concurrently with prior persists, ignoring
preceding persist barriers. Note that the visibility of memory
operations is still governed by the memory consistency model
in the presence of a strand barrier.

Strand persistency requires hardware mechanisms to man-
age visibility and persist ordering separately. Moreover, it
requires explicit annotations of programs with persist and
strand barriers, making it error-prone and difficult to program.
To this end, we implement persist barrier and strand barrier
primitives in hardware and demonstrate how hardware can
decouple visibility and persist ordering. We build logging
design that employs persist and strand barriers to enforce
only the minimal ordering constraints on persists required
for correct recovery. We integrate our logging design with
language-level persistency models that enable programmer-
friendly persistency semantics using synchronization primi-
tives in high-level programming languages. We show that
our strand persistency mechanism relaxes persist ordering
constraints and improves performance by up to 34.5%.

II. DESIGN

Next, we explain our approach to relax persist ordering.

A. Strand Persistency

Strand persistency employs two primitives to prescribe per-
sist ordering: a persist barrier to enforce persist ordering and
a strand barrier to remove ordering constraints on subsequent



l.lock()

store(A,1)
store(B,1)

l.unlock()

log(LA,A)
clwb(LA)

sfence
store(A,1)

log(LB,B)
clwb(LB)

sfence
store(B,1)

log(LA,A)
clwb(LA)

store(A,1) log(LB,B)
clwb(LB)

store(B,1)

log(LA,A)
clwb(LA)
sfence

store(A,1)
StrandBarrier

log(LB,B)
clwb(LB)
sfence

store(B,1)

log(LA,A)
clwb(LA)

store(A,1)

log(LB,B)
clwb(LB)

store(B,1)

(a) (e)(b) (c) (d)

Failure-
atomic region

Fig. 1: (a) Example failure-atomic region, (b) Baseline logging, (c) Addi-
tional ordering constraints in baseline, (d) Logging under strand persistency,
(e) Ordering constraints due to strand persistency.

persists. PM accesses on a thread separated by a persist barrier
are ordered. The recovery may never observe persists that
are separated by persist barriers on a thread out of order
after failure. Conversely, a strand barrier removes ordering
constraints on subsequent PM operations. A strand barrier
initiates a new strand—a strand behaves as a separate logical
thread in a persist order. Persists on different strands can be
issued concurrently to PM. Note that persist barriers, within a
strand, continue to order persists on that strand.

Strand persistency decouples the visibility and persist or-
der of PM operations. The consistency model continues to
order visibility of PM operations—PM operations on separate
strands are visible in an order enforced by consistency model.

Inter-strand ordering: Orderings can arise between per-
sists on different strands through strong persist atomicity [8].
Strong persist atomicity governs the ordering on memory
operations to the same memory location. A subsequent PM
operation on a new strand is ordered with the prior persist to
the same memory location – persists to the same PM location
are serialized even when they lie on different strands.

Hardware implementation: We implement memory depen-
dencies enforced by persist and strand barriers in an out-of-
order processor pipeline. A persist barrier must enforce the
order in which updates drain to PM—it orders prior stores and
CLWBs with subsequent stores and CLWBs in a program thread
(or strand). In Intel x86, TSO memory consistency orders store
retirement. Additionally, the SFENCE orders prior CLWBs with
subsequent CLWBs. Thus, in Intel x86 systems, a persist barrier
maps to an SFENCE instruction.

We implement a strand barrier instruction that removes prior
memory ordering constraints and initiates a new strand. On
encountering a strand barrier, our hardware implementation
discards ordering constraints imposed by the prior in-flight
persist barriers. Thus, any subsequent CLWBs can be issued
concurrently with the CLWBs on previous strands provided they
flush different PM locations. Our hardware implementation
also performs dependency checks for incoming memory oper-
ations to ensure strong persist atomicity between strands.

B. Logging using strand barriers

We design an undo logging scheme that relies on strand
and persist barriers for persist ordering. We create an undo
log entry in PM to record the old value of a location that is
being overwritten. The subsequent persist barrier ensures that
the log is created and flushed to PM before the update is made.
As the subsequent logs and stores can independently persist,

we issue a strand barrier after a store operation to initiate a
new strand, as shown in Figure 1(d-e).

We initialize and manage a per-thread log buffer in PM
as an array of fixed-sized log entries. The tail pointer points
to the location where the next log entry will be placed—
we increment the tail upon log-entry creation. We maintain
the tail pointer in volatile memory to ensure that subsequent
log entries created on different strands are not ordered due
to strong persist atomicity on the tail pointer. We maintain
the head log pointer in PM. We update and flush the head
pointer at the end of a failure-atomic region to atomically
commit log entries. Upon a failure, the head pointer is used
to initiate recovery. As persists to the logs on different strands
are concurrent, the failure can expose log write reorderings.
The recovery process scans and rolls back old values recorded
in valid log entries from the end of the log space.

C. Language-level persistency models
We integrate our undo-logging mechanism with Coupled-

SFR, Decoupled-SFR, and ATLAS designs, the state-of-the-
art language persistency models. In each design, we maintain
a thread-local log space and order undo log creation with
the corresponding PM store within each strand. In Coupled-
SFR, we flush all PM mutations and ensure that they persist
before committing logs at the end of a failure-atomic region.
In Decoupled-SFR and ATLAS, the persistent state lags exe-
cution. In both the designs, we record happens-before ordering
relation in log entries on their creation.

III. EVALUATION

We implement strand persistency in Gem5. We study a suite
of five write-intensive micro-benchmarks and benchmarks
used in prior works [4], [5]. Due to space limitations, we list
only the average improvement obtained in our designs. Strand
persistency enables high persist concurrency in all designs. We
compare performance achieved due to our strand implemen-
tation as compared to the baseline Coupled-SFR, Decoupled-
SFR, and ATLAS designs. Overall, we achieve performance
improvement of up to 21.8% (14.3% avg.) in Coupled-SFR,
34.5% (21.4% avg.) in Decoupled-SFR, and 29.9% (18.2%
avg.) in ATLAS with our strand implementation.

REFERENCES

[1] Intel, “Instruction set extensions programming reference,” 2014. https:
//software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf.

[2] ARM, “Armv8-a architecture evolution,” 2016. https://community.arm.
com/groups/processors/blog/2016/01/05/armv8-a-architecture-evolution.

[3] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: Leveraging
locks for non-volatile memory consistency,” in OOPSLA ’14.

[4] V. Gogte, S. Diestelhorst, W. Wang, S. Narayanasamy, P. M. Chen, and
T. F. Wenisch, “Persistency for synchronization-free regions,” in PLDI
’18.

[5] A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “Language-level persistency,” ISCA
’17.

[6] A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “Tarp: Translating acquire-release
persistency,” 2017. http://nvmw.eng.ucsd.edu/2017/assets/abstracts/1.

[7] V. Gogte, S. Diestelhorst, W. Wang, S. Narayanasamy, P. M. Chen, and
T. F. Wenisch, “Failure-atomic synchronization-free regions,” 2018. http:
//nvmw.ucsd.edu/nvmw18-program/unzip/current/nvmw2018-final42.pdf.

[8] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,” in ISCA
’14.

2

https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://community.arm.com/groups/processors/blog/2016/01/05/armv8-a-architecture-evolution
https://community.arm.com/groups/processors/blog/2016/01/05/armv8-a-architecture-evolution
http://nvmw.eng.ucsd.edu/2017/assets/abstracts/1
http://nvmw.ucsd.edu/nvmw18-program/unzip/current/nvmw2018-final42.pdf
http://nvmw.ucsd.edu/nvmw18-program/unzip/current/nvmw2018-final42.pdf

	Introduction
	Design
	Strand Persistency
	Logging using strand barriers
	Language-level persistency models

	Evaluation
	References

