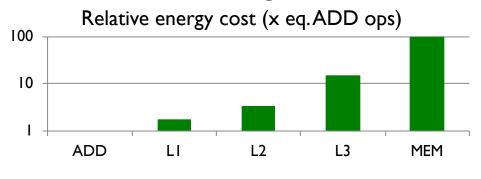
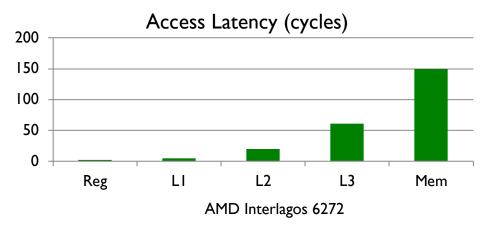
DataProf: Exposing Data Movements in the Memory Hierarchy


William Wang, Chris Emmons, Nigel Paver June 13, 2014

The Architecture for the Digital World®

Data Movements Dominate

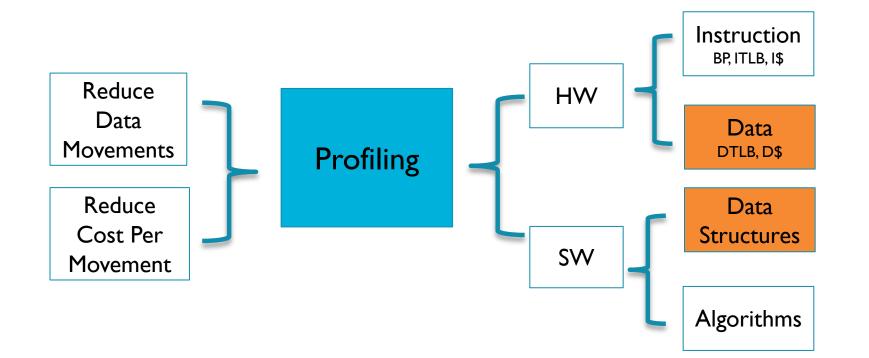
 Data movements cost 2x ~100x more energy than computations, and getting worse with shrinking nodes



AMD INTERLAGOS 6272

technology node	130nm CMOS (2006)	45nm CMOS (2008)
transfer 32b across-chip	20 computations	57 computations
transfer 32b off-chip	260 computations	1300 computations

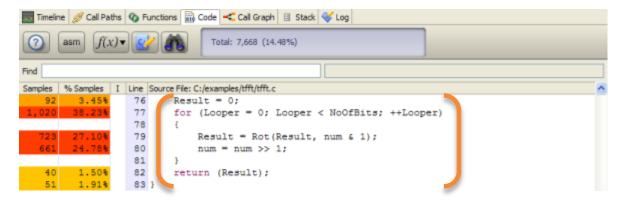
Source: Simon Moore, Communication: the next resource war


 Plus, it takes more cycles to move data to registers than the actual computation

Source: Kestor, Gokcen, et al. "Quantifying the energy cost of data movement in scientific applications."

Optimize Data Movements for Energy Efficiency

Data Profiling Helps Measure Data Movements



"You can't optimize what you can't measure"

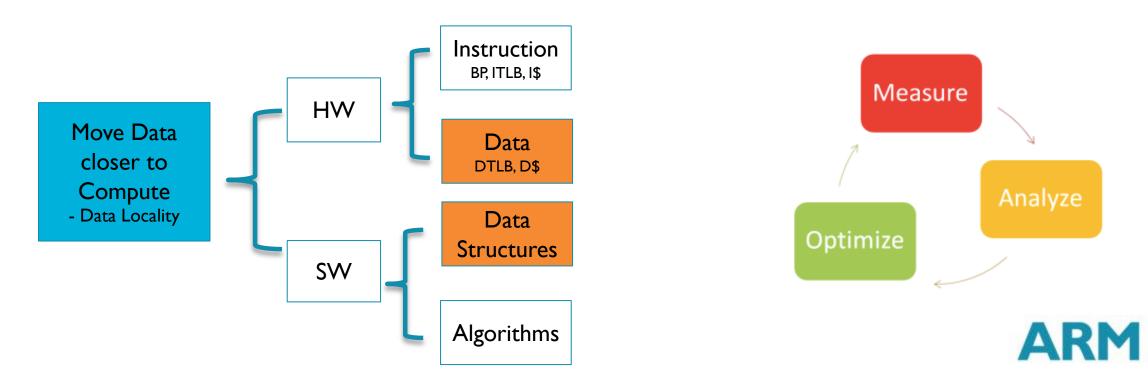
"To measure is to know." - Lord Kelvin

- Code profile helps detect code hotspots
 - DS-5
 - gprof
 - OProfile

Code Profile

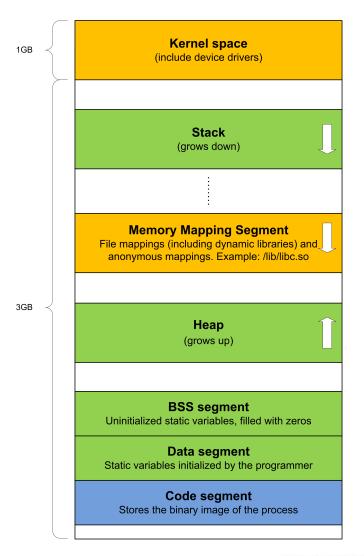
- Data profile helps detect data hotspots
 - MemSpy
 - CProf
 - DProf

Data Profile


Type Name	Description	Working Set View	Data Profile View		
Type Name	Description	Size	% of all L3 misses	Bounce	
slab	SLAB bookkeeping structure	2.5MB	32%	yes	
udp_sock	UDP socket structure	11KB	23%	yes	
size-1024	packet payload	20MB	14%	yes	
net_device	network device structure	5KB	12%	yes	
skbuff	packet bookkeeping structure	34MB	12%	yes	
ixgbe_tx_ring	IXGBE TX ring	1.6KB	1.7%	no	
socket_alloc	socket inode	2.3KB	1.7%	yes	
Qdisc	packet schedule policy	3KB	0.8%	yes	
array_cache	SLAB per-core bookkeeping	3KB	0.4%	yes	
	Total	57MB	98%	_	

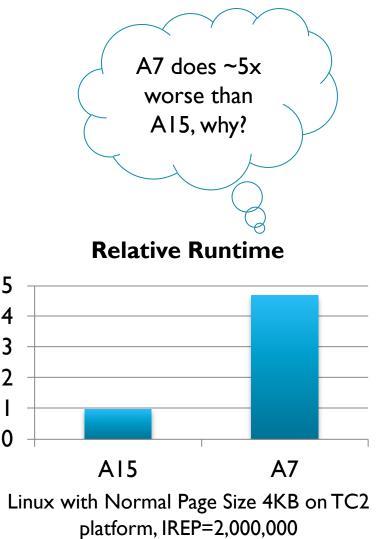
Source: Pesterev et.al, Locating Cache Performance Bottlenecks Using Data Profiling

Data Profiling and Heterogeneous Memory


- Goals: Address rising cost of communication
 - Expose data flows in real software
 - Optimize software data structures and access patterns
 - Optimize system memory hierarchies
 - Optimize data storage onto heterogeneous memories

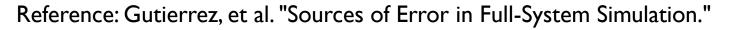
DataProf Features

Data Access Hotspots


- All data variables in the user space
 - Dynamic data on the heap and local variables on the stack
 - Static data in the .bss and .data sections
- Data members in C structures and arrays
 - Structure layout reorganization and access pattern optimization
- Cache Miss Types
 - Non-sharing misses: compulsory, capacity and conflicts
 - Sharing misses: false and true sharing
- Data View Linked to Code View in Streamline Analyzer[®]
 - Dwarf information
- Data Access Call Paths
 - Dwarf debug frame information for stack backtrace

Example Program

```
#define M = 2048; // stride distance
#define N = 64; // number of elements
#define IREP = 200; // iterations
double x[M*N], y[M*N];
for (int j = 0; j < IREP; ++j) {</pre>
  for (int i = 0; i < N*M; i += M) {</pre>
    y[i] += x[i];
} }
```

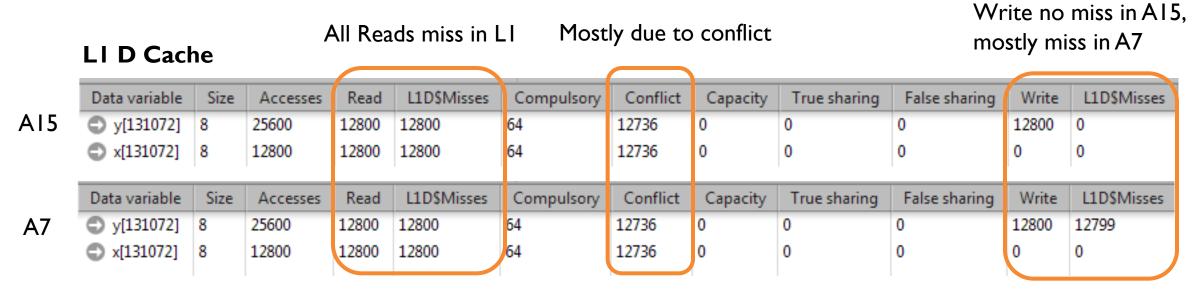


TC2 Platform AI5 and A7 Cache Configurations

- Configure the platform in gem5 simulator
- Run the program in gem5 with DataProf enabled
- Visualize the results in Streamline Analyzer

	LID\$			L2\$		
	Size (KB)	Way	Replacement	Size (KB)	Way	Replacement
A15	32	2	LRU	1024	16	Random
A7	32	4	Pseudo Random	512	8	Pseudo Random

12 11

Normal Page 4KB



. . .

0

Data Profiling – Streamline Data View Shows Cache Misses

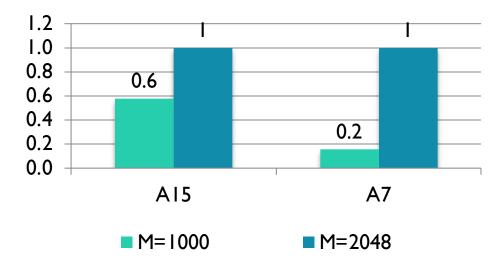
L2 Cache

	L2ReadMisses	Compulsory	Conflict	Capacity	L2WriteMisses	Compulsory	Conflict	Capacity
AI5	10333	64	10269	0	0	0	0	0
	10426	64	10362	0	0	0	0	0
			1		1	1	1	1
	L2ReadMisses	Compulsory	Conflict	Capacity	L2WriteMisses	Compulsory	Conflict	Capacity
Δ7	L2ReadMisses 19215	Compulsory 64	Conflict 19151	Capacity 0	L2WriteMisses 0	Compulsory 0	Conflict 0	Capacity 0
A7					L2WriteMisses 0 0	Compulsory 0 0	Conflict 0 0	Capacity 0 0

L2 accesses hit more in A15 than in A7

9

Optimizations in Software and Hardware


Software optimizations

- Don't stride at the D\$ set size
- Reorganize array elements gather/scatter

Hardware optimizations

- Hashed cache indexing
- Increase A7 L2 associativity

Relative runtime

- Overview of Data Profiling
- DataProf Features
- Data Profile, Analyze and Optimize with an Example Program

