arm

Quantifying the Performance
Overheads of PMDK

William Wang, Stephan Diestelhorst
2 October 2018

NVDIMMs Shipping in 2H’2018

INTEL® PERSISTENT MEMORY BASED ON 30 XPOINT™ = 3DXP NVDIMM shipping 2H'2018

Fos, Volonms pensie Slow, Persaimt heap - DDR4 -> $10/GB, NAND -> $1/4 per GB

DS ... A . 3DXP -> $2/GB, up to 512GB

VALUEACROSS A :
WEROROS y Mooty = Arm NVDIMM-ready timeframe
ey | around 2022

In-Memory Databases

SAP
o LAlINEH'llN TRACK . vmware
ol 2018 'y

2 © 2018 Arm Limited q r m

Multiple System Use-Cases for NVM

Faster Storage Denser Mem Persistent Mem
1000x faster than NAND 10x denser than DRAM Non-Volatile

/
~

|
\

DRAM

Transformative

Persistency
ftlsi:i?stem Capacity/TCO- = Failure atomicity
advantage = Ordering
bottlenecks = Endurance = [SA
= Bandwidth

3 © 2018 Arm Limited - CaChing q r m

4

Spectrum of Application Performance Boost with NVM

Executive summary

Baseline

Faster Storage

Persistent Memory

&P redis

W AOF every second AOF every request AOF on PMEM SW persistence
+ RDB + RDB + RDB on Flash no RDB
Data loss potential Up to 1 None None None " 13X perf bOOSt’ 1/4 mem COSt
Crash restart Slowest Slowest Fast Instantaneous
Application rewrite No No No Yes | NO da ta IOSS
“Memory” cost” 1x 1x 1.25x8 0.27x*
Iso-SLA performance(*) 1x \0.165x (0.149) 1.46x (1.31x) 2.18x (1.96y

= |[nstantaneous restart

A Flash costs are marginal for all configurations, thus ignored.

§ Assumes 8GB/core DRAM + 1 GB/core SCM capacity — SCM capacity very generous for log use-case, previous studies used as low as 40MB/core.
+ Assumes 8GB/core DRAM capacity, SCM = 0.25x DRAM $/GB, 1:8 capacity ratio for DRAM:SCM cache ratio.

+ Measured performance de-rated by 0.9x to account for a slower-than-DRAM SCM media fronted by a DRAM cache.

* Unable to achieve same SLA as baseline with p99 for the every-request AOF logging configuration — hence the unconstrained SLA comparison.

4 Confidential © 2018 Arm Limited

= Rewrite application

arm

Slide Courtesy of Kshitij Sudan

© 2018 Arm Limited

arm

Why Application Rewrite

= Crash consistency (failure atomicity)

? ? is needed to ensure recovery can

N restore system to a consistent state

__________________________ : — Data move through volatile memories
before they get written to PM

e o1, ~ Using CPU cache flushes and fence
s instructions

Sy

P

Recovery can inspect the data-structures in PM to
restore system to a consistent state

5 © 2018 Arm Limited q r m

Example: Add a Node to a Linked List

void) headp o
?ddnode(struct root xrootp, int data) root Node
~ struct node *newnodep; 4J .
((newnodep = calloc(1, PUbIISh
(struct node))) == NULL)
fatal("out of memory"); o EUNT
newnodep—>data = data; o |n|t|a|IZE
newnodep—>nextp = rootp—>headp;
rootp—>headp = newnodep; N d
neW O e nextp

void

addnode(struct root *rootp, int data) o
; Allocate

~ struct node *newnodep;
int flag = 0;

((nemodep =T, headp €
(struct node == NU

fatal("out of memory"); root
newnodep->data = data;

Node

pm_flush(newnodep, PUbIISh & PerSISt
; de)); T .
on_tencel)s o 0 o o Initialize & Persist

->headp = newnodep;

pm_flush(&(rootp->headp),
(rootp->headp));

pm_fence(); neWNOde nextp

6 © 2018 Arm Limited o PM Allocate a rm

Example: Add Concurrency to the Mix

void
addnode(struct root *xrootp, int data)
{

struct node *newnodep;
((newnodep = calloc(1,
(struct node))) == NULL)
fatal("out of memory");
newnodep—>data = data;
newnodep—>nextp = rootp—>headp;
rootp—>headp = newnodep;

void
addnode(struct root *xrootp, int data)

{

struct node *newnodep;
((newnodep = calloc(1,
(struct node))) == NULL)
fatal("out of memory");
newnodep—>data = data;

pthread_mutex_lock
&rootp—>1listlock);

void
addnode(struct root *rootp, int data)

{
~ struct node *newnodep;
((newnodep = 1,
(struct node))) == NULL)
fatal("out of memory");

newnodep—>data = data;

pthread_mutex_lock(

&rootp—>1listlock);
newnodep—>nextp = rootp->headp;

pm_T lush(newnode,
(struct node));

rootp—>headp = newnodep;

pm_flush(&(rootp—>headp),
pthread_mutex_unloc
&rootp—>listlock);

What can still go wrong?

Fences are missing after persists, they can get
persisted out of order!!!

DURABLE ENOUELE - “T'S COMPLICATED"

Enqueue (data):
Allocate a node; install data; next = NULL

Flush node content to memory. (Initialization guideline.)
Read t2// and values.

Help: Update tail to point to the last node

Insert node to queue {CAS last pointer ptr point to it

Complete (and persist) previous operation

Head

uﬂwﬁ‘

It’s Complicated

- Oracle Labs at PPoPP’18

What about making this lock-free?

Source: M. Friedman, A Persistent Lock-Free Queue for Non-Volatile Memory, PPoPP’18

7 ©2018 Arm Limited Simplify lock-based persistent programming “Persistency for Synchronization-free Regions” in PLDI 18 a rm

Persistent Memory Programming Models

Native Persistence

pt->y =1;

' dccvap(&pt->x)
dccvap(&pt->y)
 dsb

Eﬂag=1;

 dccvap(&flag)
 dsb

Library Persistence — Atomic

p->y = I
pmem_persist(&pt,
sizeof(pt))

flag = I;
pmem_persist(&flag,
sizeof(flag))

Library Persistence — Durable TXs

' TX_BEGIN{

pt->x = 1;
pt->y =1;
} TX_END

8 © 2018 Arm Limited

Programming simpler, overhead higher

Add Concurrency to the Mix

Lib Persistence — Lock-free

struct Node

int x;
int y;

updateNode(Nodex pt, int flag)

atomic<Nodex> newpt = Node();
persist(newpt);

newpt->x = 1;
newpt->y = 1;
persist(&newpt->x);
persist(&newpt->y);

() {

atomic<Nodex> cowpt = pt;

(CAS(&pt, cowpt, newpt)) {
persist(&pt);

flag = 1;
persist(&flag);

Lib Persistence — Lock-based

mutex.lock()

pt->x = 1;

pt->y =1,

' pmem_persist(&pt,
sizeof(pt))

flag = 1;
omem_persist(&flag,
isizeof(flag))
Emutex.unlock()

Lib Persistence — Durable TXs

9 © 2018 Arm Limited

Programming simpler, overheads higher

———d

Durable Transactions

= TXs provide clean failure semantics = Durable transactions guarantee Tx

, failure atomicity
= Accelerate w. Persistent HTM

- Ordered persists + logging

TXBEGIN{ _________ i createPersistUndoLog (L) ‘ i
' pt->x = 1; : ¥ E fence
pt->y = 1; | L mutateData (M) i
'} TX_END ; : I |
________________________ i persistData (P) !

| v |

i [commitLog (C)] i

10 © 2018 Arm Limited a r m

PMDK (Persistent Memory Development Kit)

Formally NVML, ‘pmem libraries’

Y

A

FreeBSD

Y
. . . 1
 PMDK provides transactional APls for persistent g ' Currently 10 libraries
. 1 .
memory programm|ng c? : ‘?cludes transactional APIs
2, I
- libpmemobj transactional APIs - |\ PMDK | ,
- Use fine-grained logging and cache flushes FS_ltan:g;f S -Lo-ad/Store
11
o ,—----------%DAX(nopagecache)
21
S)) = PM-Aware | MMU | ' | _
* Works on 64-bit Linux, Windows and 64-bit 2\ | File System |Mapping| ! stendard naming and
‘lé I : permission model
2\ ;

’
\

e Supports x86 and Armv8 (experimental)

NVDIMMs / NVM

Ref: pmem.io

11 © 2018 Arm Limited q r m

Analyze Cost of Durable Transactions

Logging, Persisting and Ordering

12 Confidential © ARM 2016 ARM

Cost of Durable Transactions
Logging, Persisting and Ordering

Persisting

- Latency too high if PoP is off-
chip

- Undo log needs to be persisted
in TX

- Instruction bloat due to looping

through addresses with
DCCVAP

13 © 2018 Arm Limited

Logging

- Write amplification, i.e., write
twice

- Copying (costly, and cache
pollution)

- Barriers with undo logging
- Memory fragmentation

- Code bloat due to logging

Ordering

- Serialize memory accesses

- Excessive # of barriers via API
calls

- Persisting barriers same as
ordering barriers

arm

Performance Measurement Setup

Payload

Fixed frequency and ASLR off

Thread and memory affinity in multi-node

Workload
TPC Redis-Benchmark é Redis
TPCC Maps (PMDK/NVML)
CPU Memory
CLFLUSH vs. CLFLUSHOPT m Local DRAM

Remote DRAM to emulate NVM

14 © 2018 Arm Limited

arm

Flushing, Logging and Fencing Overhead

E5-1660v4 PMDK-v1.3

4 100%\ /~ N
- 10
= A
< 0,
%o 86%
o
=
©
& 69%
© 65%
€ 61%
2
v
0.5 47%
0.0 |
Log on Flush on
- AN 4

W map_insert @ map_remove

86%

32%

28%I

Both on

Redis SET

Normalized throughput

Baseline: PMDK without flushing/fencing and logging on

15 © 2018 Arm Limited

1.0

0.5

0.0

E map_insert

i7-6600U PMDK-v1.3

71%
68%

Log on Flush onFence on
N——

83%

72%

63|

H map_remove

R
96%5a0

Workloads: Map insert/remove, Redis Set. Implemented with NVML v.10 and v1.3 libpmemobj transactions
Platforms: Intel E5-1660v4 with CLFLUSH and Intel i7-6600U with CLFLUSHOPT, single node with local DRAM

81%

3739%

Allon

Redis_SET

Logging overhead 0~35%
Flushing overhead 14~53%

Fencing overhead 2~5%

arm

Software Opt Can Reduce Logging Overhead

E5-1660v4 PMDK-v1.3

100%
1.0

86%

69%
65%
61%

0.5 47%‘
0.0 |
\ Logon / Flushon

W map_insert @ map_remove

Normalized throughput

E5-1660v4 NVML-v1.0

100%

1.0
g A
Q.
86%)
=)
o
—
<
-
ks
N 68%
© 64%
€
—
(@]
= 52%
0.5
44%
32%
28% v
II 25%
0.0
Both on \ Logon /) Flushon
Redis_SET B map_insert @map_remove

Baseline: PMDK without flushing/fencing and logging on

16 © 2018 Arm Limited

64%

19%
16%

Both on

Redis SET

Workloads: Map insert/remove, Redis Set. Implemented with NVML v.10 and v1.3 libpmemobj transactions
Platforms: Intel E5-1660v4 with CLFLUSH and Intel i7-6600U with CLFLUSHOPT, single node with local DRAM

e Software opt can
reduce logging
overhead

« NVML v1.3 (left) reduces
logging overhead over
NVML v1.0 (right)

« Redis-SET performance not
affected by logging
overhead

arm

Summary of Performance Overheads Analysis

* Flushing overhead up to 53%.
* Logging overhead up to 35%.
* Fencing overhead up to 5%

 These overheads can be reduced by

Software optimizations

Hardware accelerations

17 © 2018 Arm Limited q r m

Ease-of-Programming vs Performance

@ . concurrent : : : - :
Programming Ordering Logging Persisting Translation
Performance B : concurrent & durable Model
| Lock-free Atomics v X v v
CAS @ 1 ™ v v v v
HTM :
. PCAS . Locklng \/ \/ (log elision) \/ \/
Ease-of-Programming Performance
PHTM
Persistent CAS as drop-in replacement for CAS Relaxed memory persistency model
Persistent HTM as drop-in replacement for HTM Hardware accelerations
. . . Compiler instrumented failure atomicity for Software optimizations
Fine-grained Locking @ locking
l ® STM
SFR |

Ease-of-programming

arm

18 © 2018 Arm Limited

Thank You!

Danke!

Mercil

15157 !

HYMED! arm
Gracias!

Kiitos!
ZrArghL| Cf
YTo-ddic

