
© 2018 Arm Limited

Quantifying the Performance
Overheads of PMDK

William Wang, Stephan Diestelhorst
2 October 2018

MEMSYS18

© 2018 Arm Limited 2

NVDIMMs Shipping in 2H’2018

§ 3DXP NVDIMM shipping 2H’2018

• DDR4 -> $10/GB, NAND -> $1/4 per GB

• 3DXP -> $2/GB, up to 512GB

§ Arm NVDIMM-ready timeframe
around 2022

© 2018 Arm Limited 3

Multiple System Use-Cases for NVM

Storage

§ Filesystem

bottlenecks

DRAM NVM SSD

Transformative

Capacity/TCO-

advantage

§ Endurance

§ Bandwidth

§ Caching

DRAM

NVM

NVMDRAM

Persistency

§ Failure atomicity

§ Ordering

§ ISA

Faster Storage
1000x faster than NAND

Denser Mem
10x denser than DRAM

Persistent Mem
Non-Volatile

© 2018 Arm Limited 4

Spectrum of Application Performance Boost with NVM

§ 13x perf boost, 1/4 mem cost

§ No data loss

§ Instantaneous restart

§ Rewrite application13x

Slide Courtesy of Kshitij Sudan

Faster Storage Persistent MemoryBaseline

© 2018 Arm Limited 5

Why Application Rewrite

§ Crash consistency (failure atomicity)
is needed to ensure recovery can
restore system to a consistent state

– Data move through volatile memories
before they get written to PM

– Using CPU cache flushes and fence
instructions

Core-
1

Core-
2

Core-
3

Core-
4

L1 $ L1 $ L1 $ L1 $

LLC

DRAM

Recovery

Persistent Memory (PM)

Recovery can inspect the data-structures in PM to
restore system to a consistent state

© 2018 Arm Limited 6

Example: Add a Node to a Linked List

root Node
headp

newNode

1

nextp

23

3

root Node
headp

newNode

1

nextp

23

3

Allocate

Initialize

Publish

PM Allocate

Initialize & Persist
Publish & Persist

© 2018 Arm Limited 7

Example: Add Concurrency to the Mix

What can still go wrong?
Fences are missing after persists, they can get
persisted out of order!!!

- Oracle Labs at PPoPP’18

Source: M. Friedman, A Persistent Lock-Free Queue for Non-Volatile Memory, PPoPP’18

Simplify lock-based persistent programming “Persistency for Synchronization-free Regions” in PLDI ’18

What about making this lock-free?

© 2018 Arm Limited 8

Persistent Memory Programming Models

Native Persistence Library Persistence – Atomic Library Persistence – Durable TXs

pt->x = 1;

pt->y = 1;

dccvap(&pt->x)

dccvap(&pt->y)

dsb

flag=1;

dccvap(&flag)

dsb

Programming simpler, overhead higher

TX_BEGIN{

pt->x = 1;

pt->y = 1;

} TX_END

pt->x = 1;
pt->y = 1;
pmem_persist(&pt,

sizeof(pt))

flag = 1;
pmem_persist(&flag,

sizeof(flag))

© 2018 Arm Limited 9

Add Concurrency to the Mix

Lib Persistence – Lock-free Lib Persistence – Lock-based Lib Persistence – Durable TXs

Programming simpler, overheads higher

TX_BEGIN{
pt->x = 1;
pt->y = 1;
} TX_END

mutex.lock()
pt->x = 1;
pt->y = 1;
pmem_persist(&pt,
sizeof(pt))

flag = 1;
pmem_persist(&flag,
sizeof(flag))
mutex.unlock()

© 2018 Arm Limited 10

Durable Transactions

§ TXs provide clean failure semantics

§ Accelerate w. Persistent HTM

§ Durable transactions guarantee Tx
failure atomicity

• Ordered persists + logging

createPersistUndoLog (L)

mutateData (M)

commitLog (C)

persistData (P)

TX_BEGIN{
pt->x = 1;
pt->y = 1;
} TX_END

fence

© 2018 Arm Limited 11

PMDK (Persistent Memory Development Kit)
Formally NVML, ‘pmem libraries’

• PMDK provides transactional APIs for persistent

memory programming

• libpmemobj transactional APIs

• Use fine-grained logging and cache flushes

• Works on 64-bit Linux, Windows and 64-bit

FreeBSD

• Supports x86 and Armv8 (experimental)

Ref: pmem.io

Confidential © ARM 2016 12

Text 54pt sentence case Analyze Cost of Durable Transactions

Logging, Persisting and Ordering

© 2018 Arm Limited 13

Cost of Durable Transactions
Logging, Persisting and Ordering

Persisting Logging Ordering
• Latency too high if PoP is off-

chip

• Undo log needs to be persisted
in TX

• Instruction bloat due to looping
through addresses with
DCCVAP

• Write amplification, i.e., write
twice

• Copying (costly, and cache
pollution)

• Barriers with undo logging

• Memory fragmentation

• Code bloat due to logging

• Serialize memory accesses

• Excessive # of barriers via API
calls

• Persisting barriers same as
ordering barriers

© 2018 Arm Limited 14

Performance Measurement Setup

Payload
Redis-Benchmark

TPCC

Workload
Redis

Maps (PMDK/NVML)

CPU
CLFLUSH vs. CLFLUSHOPT
Fixed frequency and ASLR off

Thread and memory affinity in multi-node

Memory
Local DRAM

Remote DRAM to emulate NVM

© 2018 Arm Limited 15

71%

63%

96%

37%

68%
72%

95%

39%

83%

98%

81%

0.0

0.5

1.0

Log on Flush on Fence on All on

N
or

m
al

ize
d

th
ro

ug
hp

ut

i7-6600U PMDK-v1.3

map_insert map_remove Redis_SET

69%

47%

28%

65%
61%

32%

100%

86% 86%

0.0

0.5

1.0

Log on Flush on Both on

N
or

m
al

ize
d

th
ro

ug
hp

ut

E5-1660v4 PMDK-v1.3

map_insert map_remove Redis_SET

• Logging overhead 0~35%

• Flushing overhead 14~53%

• Fencing overhead 2~5%

Flushing, Logging and Fencing Overhead

• Workloads: Map insert/remove, Redis Set. Implemented with NVML v.10 and v1.3 libpmemobj transactions
• Platforms: Intel E5-1660v4 with CLFLUSH and Intel i7-6600U with CLFLUSHOPT, single node with local DRAM

Baseline: PMDK without flushing/fencing and logging on

© 2018 Arm Limited 16

44%

52%

19%

25%

68%

16%

100%

64% 64%

0.0

0.5

1.0

Log on Flush on Both on

No
rm

al
ize

d
th

ro
ug

hp
ut

E5-1660v4 NVML-v1.0

map_insert map_remove Redis_SET

69%

47%

28%

65%
61%

32%

100%

86% 86%

0.0

0.5

1.0

Log on Flush on Both on

No
rm

al
ize

d
th

ro
ug

hp
ut

E5-1660v4 PMDK-v1.3

map_insert map_remove Redis_SET

• Software opt can
reduce logging
overhead
• NVML v1.3 (left) reduces

logging overhead over
NVML v1.0 (right)

• Redis-SET performance not
affected by logging
overhead

Software Opt Can Reduce Logging Overhead

• Workloads: Map insert/remove, Redis Set. Implemented with NVML v.10 and v1.3 libpmemobj transactions
• Platforms: Intel E5-1660v4 with CLFLUSH and Intel i7-6600U with CLFLUSHOPT, single node with local DRAM

Baseline: PMDK without flushing/fencing and logging on

© 2018 Arm Limited 17

Summary of Performance Overheads Analysis

• Flushing overhead up to 53%.

• Logging overhead up to 35%.

• Fencing overhead up to 5%

• These overheads can be reduced by
• Software optimizations

• Hardware accelerations

© 2018 Arm Limited 18

Ease-of-Programming vs Performance

Ease-of-programming

Performance
Lock-free

HTM

Fine-grained Locking

PCAS

PHTM

SFR

: concurrent
: concurrent & durable

STM

Programming
Model

Ordering Logging Persisting Translation

Atomics ✓ ✗ ✓ ✓
TM ✓ ✓ ✓ ✓
Locking ✓ ✓ (log elision) ✓ ✓

Ease-of-Programming Performance

Persistent CAS as drop-in replacement for CAS
Persistent HTM as drop-in replacement for HTM
Compiler instrumented failure atomicity for
locking

Relaxed memory persistency model
Hardware accelerations
Software optimizations

CAS

1919

Thank You!
Danke!
Merci!
��!
�����!
Gracias!
Kiitos!
감사합니다
ध"यवाद

© 2018 Arm Limited

