
Quantifying the Performance Overheads of PMDK
William Wang, Stephan Diestelhorst

Arm Research
{william.wang,stephan.diestelhorst}@arm.com

1 INTRODUCTION TO PERSISTENT MEMORY
PROGRAMMING

For systems with non-volatile main memories, i .e .,NVDIMMs ,
failure atomicity is required to guarantee that systems can always
recover to consistent states following power or system failures.
Such failure atomicity can be achieved with logging and flushing
as with filesystems. Similarly, with non-volatile main memories,
failure atomicity can be achieved with user space applications us-
ing write logging, cacheline flushing, and barriers that order such
operations. Write logging, either undo or redo logging, ensures
atomicity when a failure interrupts the last atomic operation from
completion. Undo logging helps systems recover to the last consis-
tent state immediately before the failed atomic operation, and redo
logging helps systems restore to the consistent state right after the
failed atomic operation. Cacheline flushing ensures volatile caches
do not hold persistent data from reaching the point of persistence,
so persistent data won’t be lost when a sudden power or system
failure occurs. Barriers help prevent potential reordering in the
memory hierarchy, as caches and memory controllers may reorder
memory operations. For example, a barrier ensures the undo log
copy of the data gets persisted onto the persistent memory before
the data is mutated in-place, so it’s guaranteed that the last atomic
operation can be rewound should a failure happens. However, it’s
non-trivial to add such failure atomicity in user applications with
low-level operations such as write logging, cacheline flushing, and
barriers [5].

PMDK [4] is a user space library that abstracts such low-level
operations away from application developers and wraps such oper-
ations into transactional APIs in libpmemobj that user space appli-
cations can call for ensuring failure atomicity. libpmemobj trans-
actional APIs do not guarantee multithread atomicity though [2],
developers need to take care of multithread atomicity as with tradi-
tional volatile memories. ATLAS [3] adds support of failure atom-
icity with traditional lock-based concurrent applications.

2 EVALUATION
Given PMDK is supported on Linux, Windows and FreeBSD plat-
forms, it has been widely adopted to port legacy applications, such
as in-memory databases, to persistent memory [6]. The conve-
nience of calling into transactional APIs in PMDK doesn’t come for
free though. In this work, we quantify the performance overheads

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6475-1/18/10.
https://doi.org/10.1145/3240302.3240423

of PMDK transactions, to identify potential areas for hardware
acceleration.

2.1 Workloads
We use the small kernel workloads implemented with PMDK libp-
memobj transactional APIs that come with PMDK, as well as a
more realistic workload, the PMDK-enabled Redis-server, driven
by TPCC payload as well as Redis-benchmark.

For small kernel workloads, we have trees and hashmaps imple-
mentedwith libpmemobj APIs, including ctree, btree, rtree, rbtree and
hashmap. The throughputs of insert, delete and lookup operations
are measured.

In addition, we have PMDK-enabled Redis-server driven with
TPCC payload and Redis-benchmark. The TPCC transactional oper-
ations [1] consist of 1) new order 2) payment 3) order status 4) stock
level and 5) delivery, in which 3) and 4) are read-only operations,
and performance is measured by throughputs of TPCC transactions.
Redis-benchmark, a command line tool in Ubuntu distributions, is a
synthetic payload generator for evaluating the Redis-server under
different load conditions. We use Redis-benchmark to generate SET
requests as payload to the Redis-server.

2.2 Methodology
The small kernel workloads are run with logging and flushing
functions turned on and off. For PM-Redis, the workload is run with
flushing turned on and off to measure the overhead with cacheline
flushing. All experiments are run on a commodity Xeon E5-1660v4
machine that features CLFLUSH only 1 and an i7-6600U machine
that features CLFLUSHOPT 2. CLFLUSHOPT optimizes away the
implied fence with CLFLUSH that over-serializes cacheline flush
operations.

We modify the code in pmem.c to turn cacheline flushing off,
and measure the performance difference as compared to the default
with cacheline flushing on, to isolate the cost of flushing. And, we
isolate the cost of ordering as well on the i7-6600U machine that
supports CLFLUSHOPT by turning fencing off in pmem.c. Similarly,
we modify the code in tx.c to turn PMDK undo logging off, and
measure the performance difference as compared to the default with
undo logging on, to isolate the performance overhead incurred with
logging.

3 RESULTS
In this section, we discuss the transactional overheads with PMDK
libpmemobj, which includes the overheads of logging, persisting,
and ordering in transactions. In addition, we also discuss the trans-
lational overhead to dereference persistent pointers for direct load
and store accesses.

1CLWB or CLFLUSHOPT is not yet featured in latest Xeon E5
2CLWB is not yet featured in latest i7

https://doi.org/10.1145/3240302.3240423


3.1 Transactional Overheads
For trees and hashmaps, persisting and logging together incur 63%–
72% performance overhead for insertions and 61%–68% overhead
for deletions. Figure 1 shows the overhead for each operation when
logging, persisting or/and ordering is turned on, the measured
performance is normalized to the baseline transaction throughput
with PMDK logging, flushing and ordering all turned off. Lookup
operations are read-only, reads do not incur overhead, as logging
and persisting are for writes only.

Figure 1: Overheads of logging, persisting and ordering in
PMDK transactions

3.1.1 Logging Overhead. PMDK undo logging incurs an over-
head of 29%–31% for insertions and 32%–35% for deletions with
trees and hash maps. Lookups are reads only, reads do not incur
logging overhead. Redis-SET doesn’t incur logging overhead due
to no logging featured in the PM-Redis implementation.

3.1.2 Persisting Overhead. Persisting incurs an overhead of 37%–
53% for insertions and 28%–39% for deletions with trees and hash
maps. Lookups are reads only, reads do not incur persisting over-
head. Redis-SET incurs an overhead of 14%–17%.

3.1.3 Ordering Overhead. Ordering incurs an overhead of 4%
for insertions and 5% for deletions with trees and hash maps, and
an overhead of 2% with Redis-SET.

Each operation, i.e., insertion, deletion or lookup, has on av-
erage 15.7 synchronization barriers. Each operation is typically
comprised of one PMDK transaction, sometimes the transaction
triggers another transaction, for example, insertion or deletion may
trigger re-balancing of balanced trees and resizing of hashmaps.
Each PMDK transaction has on average 14.1 synchronization barri-
ers.

For TPCC driven PMDK-enabled Redis, each TPCC transaction
has on average 12 barriers, while each PMDK transaction has on
average 7 barriers. The difference with trees and hashmaps is due
to different read and write ratios.

Figure 2 shows the number of barriers with and without the undo
logging in PMDK. Without undo logging in PMDK, each operation
has on average 11 synchronization barriers, while each PMDK trans-
action has on average 10 synchronization barriers. Undo logging
increases the number of barriers by 40%.

As an example, for a ctree insert operation, the transaction begins
with copying old data to the undo log with two barriers, and is fol-
lowed by the commit phase with four barriers. The four barriers in
the commit stage are for 1) allocating a new node 2) initializing the
node with zeros 3) assigning values to the new node and inserting
the new node to the tree and 4) changing commit status and log
cleanup. Barriers are not only in transactional API implementations,

(a) With undo logging (b) Without undo logging

Figure 2: Number of barriers per operation

they are embedded in library calls within transactions, for example,
pmalloc and pmemset contain barriers too as in 1) and 2).

3.2 Translation Overheads
Figure 3 shows how certain functions in the PMDK implementation
contribute to the total number of executed instructions in persistent
applications. The function pmemobj_tx_add_range adds the data to
be mutated into the undo log, and the function pmemobj_tx_commit
commits the transaction. The function pmemobj_direct converts a
persistent pointer that is represented by a pool ID and an offset,
where the pool ID is looked up in a cuckoo hashmap to get mapped
to the start address and then added by the offset, to a naked pointer
that can be dereferenced for direct load and store accesses. The
persistent pointer to naked pointer conversation and vice versa
constitute as the translation overheads. The translation overheads
are significant for search operations at 25% and 44% of the total
number of executed instructions, which is a significant cost for read-
heavy persistent workloads. For insert and delete operations, the
translation overhead is at 7%–9% of the total executed instructions.

Figure 3: Translation overheads

4 CONCLUSIONS
The significant performance overheads of the PMDK implementa-
tion on current commodity hardware, as discussed in this paper,
point to areas for potential hardware acceleration, i.e., logging, per-
sisting, ordering and translation. Several efforts have already gone
in this direction. Wang et.al.[8] accelerates undo logging in hard-
ware. WHISPER [6] accelerates persisting with persistent buffers
and introduces a dfence to reduce ordering overhead. Proteus [7]
accelerates translation with special load and store instructions.

2



REFERENCES
[1] 2010. TPC Benchmark Standard Specification Revision 5.11. (February 2010).

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf.
[2] 2017. Persistent Memory Atomics and Transactions. (January 2017).

https://www.snia.org/sites/default/files/technical_work/Whitepapers/PM_
Atomics_and_Transactions.pdf.

[3] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014. Atlas: Lever-
aging Locks for Non-volatile Memory Consistency. In Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems Languages &
Applications (OOPSLA ’14). ACM, New York, NY, USA, 433–452.

[4] Intel. [n. d.]. Non-Volatile Memory Library. ([n. d.]). Retrieved December 5, 2017
from https://github.com/pmem/nvml/

[5] Virendra J. Marathe, Margo Seltzer, Steve Byan, and Tim Harris. 2017. Persistent
Memcached: Bringing Legacy Code to Byte-Addressable Persistent Memory. In

9th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 17).
USENIX Association, Santa Clara, CA.

[6] Sanketh Nalli, Swapnil Haria, Mark D Hill, Michael M Swift, Haris Volos, and
Kimberly Keeton. 2017. An Analysis of Persistent Memory Use with WHISPER. In
Proceedings of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, 135–148.

[7] Seunghee Shin, Satish Kumar Tirukkovalluri, James Tuck, and Yan Solihin. 2017.
Proteus: A Flexible and Fast Software Supported Hardware Logging Approach for
NVM. In Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-50 ’17). ACM, New York, NY, USA, 178–190.

[8] Tiancong Wang, Sakthikumaran Sambasivam, Yan Solihin, and James Tuck. 2017.
Hardware Supported Persistent Object Address Translation. In Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-50
’17). ACM, New York, NY, USA, 800–812.

3

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
https://www.snia.org/sites/default/files/technical_work/Whitepapers/PM_Atomics_and_Transactions.pdf
https://www.snia.org/sites/default/files/technical_work/Whitepapers/PM_Atomics_and_Transactions.pdf
https://github.com/pmem/nvml/

	1 Introduction to Persistent Memory Programming
	2 Evaluation
	2.1 Workloads
	2.2 Methodology

	3 Results
	3.1 Transactional Overheads
	3.2 Translation Overheads

	4 Conclusions
	References

