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ABSTRACT
Emerging byte-addressable non-volatile memory (NVM) technolo-
gies, such as PCM and ReRAM, o�er signi�cant gains in terms of
density and power consumption over their volatile counterparts.
Their write endurance is, however, orders of magnitude lower than
DRAM, potentially causing devices to fail in seconds. Therefore, to
use NVM as DRAM replacement, writes must be managed carefully.

In this paper, we study the endurance problem for NVM main
memories with realistic server workloads. We explore three existing
techniques to extend NVM lifetime: last-level cache replacement
policies, compression, and NVM wear-leveling. The �rst two ap-
proaches increase lifetime by reducing the write tra�c from the
cache to the main memory. Wear-leveling spreads writes and re-
duces hotspots responsible for fast failures.

Even though custom replacement policies and compression are
common in DRAM caches inside NAND �ash devices, we �nd that
they provide insu�cient lifetime gains for NVM main memories
with realistic server workloads. Caching writes is e�ective, but
adapting the replacement policy only provides modest write reduc-
tions by 10%, while compression schemes must quadruple the cache
capacity to achieve reductions of 20%. In both cases, the lifetime
increases by an order of magnitude, which, for example, translates
in an improvement from 12 days to 6 months for PCM. In contrast,
wear-leveling algorithms can increase overall lifetime by at least
two orders of magnitude, for instance, from 12 days to 15 years
for PCM. These results indicate that wear-leveling techniques are
more promising to ensure that NVM technologies are feasible to
use as DRAM replacement.
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1 INTRODUCTION
Non-Volatile Memory (NVM) technologies feature high density,
low cost and persistence of stored information without refreshes.
Furthermore, owing mainly to its non-volatility property, NVM
is extremely power e�cient compared to its volatile counterparts,
including DRAM. So far, NVM technologies have been constrained
to applications in the lower layers of the memory hierarchy in-
side long-term storage devices. Nevertheless, emerging memory
technologies, such as Phase Changing Memory (PCM) and Resis-
tive RAM (ReRAM), are also byte-addressable similar to DRAM.
This greatly simpli�es the operation of NVM-based devices, and
has resulted in strong interest in using these technologies as main
memories.

Despite recent improvements, emerging NVMs still su�er from
low write endurance, that is the number of writes per bit cell be-
fore the cell breaks. This is one of the fundamental problems that
prevented the use of previous NVM technologies, such as NAND
�ash, in main memories. To put that into perspective, DRAM cells
can be written to about 1016 times, while PCM and ReRAM have
write endurances in the range 106-108 [13, 14]. In other words,
NVM technologies have limited endurance which results in very
short service lifetime making them impractical as a replacement
for DRAM.

In this work, we estimate the gap in the lifetime of an NVM main
memory that must be satis�ed before these technologies can be
used to replace DRAM. We pro�le the write tra�c generated by
four common server workloads while running on a simulated model
of a typical server system, and explore the use of three technique
to extend the lifetime of NVM main memories: cache replacement
policies, cache compression and wear-leveling. To evaluate cache
replacement policies, we implement four di�erent schemes from the
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Figure 1: Average lifetime improvement achieved by pro-
gressively combining techniques analyzed in this paper.
Each portion of a bar corresponds to the lifetime increase
achived by a single technique. The techniques at the bottom
of the stack are added �rst, while techniques towards the top
are evaluated in conjunction with the ones below. The sys-
tem used in these experiments contains L1, L2 and L3 caches
of 32 KB, 256 KB and 8 MB with LRU replacement policy ex-
cept the L3 when evaluating replacement policies.

literature and compare the results to the traditional Least Recently
Used (LRU) policy. The motivation behind this approach is to cache
the writes to reduce the number of write operations to the main
memory, thus increasing the NVM lifetime. However, we �nd that in
most cases, changing the replacement policy does not substantially
reduce write operations.

The second technique compresses the cache to reduce capac-
ity misses, and decrease the writes to main memory. We estimate
that by using compression we can double the capacity of the cache
without substantially increasing the physical size of the device.
However, we �nd that increasing the cache capacity is not an ef-
�cient mechanism to achieve suitable lifetime because this only
reduces the write operations by 15%.

Wear-leveling algorithms in the NVM main memory is the third
and �nal technique we consider. We develop a simple, dynamic
wear-leveling mechanism and estimate the resulting lifetime of
the NVM device. We �nd that this scheme can increase the life-
time by one to two orders of magnitude. Furthermore, using write
tra�c information, we calculate the upper bound on the lifetime
improvement using oracle wear-leveling to be about three orders
of magnitude.

In this paper, we look at the techniques mentioned above as a
black box, providing a factorial increase of lifetime (by a factorial
reduction of e�ective writes). That way, it is possible to make no
assumptions about the mechanisms in one component to assess
the entire lifetime. Figure 1 summarises our results and shows that
the lifetime contributions of several common techniques do not
stack. Instead, while e�ective in isolation, their compound e�ect is
diminished when applied in combination. Especially worrisome is
the reduced e�ect of write avoidance techniques when coupled with

wear-leveling, suggesting that write reductions obtained by plain
measurements on address traces do not translate into an equivalent
lifetime increase.

The aim of this research is to provide an understanding of the
endurance problem and its main causes:

• We demonstrate the magnitude of the endurance problem
for NVM main memories with realistic server workloads.

• We evaluate the impact of LLC cache con�guration on the
endurance of the NVM.

• We evaluate the e�ectiveness of previously proposed tech-
niques in the context of main memory lifetime extension.

• We make recommendations based on extensive evaluation
to increase the lifetime of NVM main memories.

The remaining of this paper is organized as follows. In Section 2
and Section 3, we present related work on methodologies to eval-
uate NVM lifetime and techniques to improve it respectively. In
Section 4, we discuss the methodology used throughout this work.
Detailed experimentation results for each technique are presented
and analyzed in Section 5. In Section 6, directions for future work
are discussed. Finally, Section 7 summarizes our conclusions.

2 RELATEDWORK ON EVALUATION
METHODOLOGIES

Various approaches have been used in other works to evaluate pro-
posed write suppression and wear-leveling techniques that aim to
mitigate the NVM endurance problem. In general, a set of bench-
marks is selected and simulated while various pieces of data are col-
lected depending on the technique in question. The methodologies
used to evaluate write suppression techniques, such as innovative
cache replacement policies, assess the impact of the idea by using
almost exclusively the total number of writes to NVM compared
to some baseline [11, 17, 29]. Some papers also perform weighted
evaluations of their approach, since they consider that the cost of
read and write operations di�er [24]. This information alone does
not provide enough insight into the e�ectiveness of the proposed
solution. This is because write reduction does not necessarily trans-
late to a signi�cant lifetime improvement. For instance, a cache
replacement policy might reduce the overall write tra�c to NVM,
but increase the number of writes to speci�c memory locations
causing uneven wear out.

In contrast, research that presents wear-leveling schemes eval-
uates the lifetime improvement as a result of spreading the write
operations evenly across the memory space. In this case the density
of write operations at di�erent granularities is used to evaluate the
proposed scheme [25, 35]. To gather this information workloads
are run and the frequency of write accesses is registered. The life-
time is then estimated by assuming that the NVM is accessed at
that rate. This information is not enough to assess the impact that
other components of the system, such as the cache, have in the
performance of the wear-leveling scheme. The methodology used
throughout our work collects a wide range of information from the
simulated memory system to provide a complete view of the e�ect
of any technique. We also simulate multiple techniques applied
to the same system to observe how this a�ects the lifetime of the
NVM main memory under realistic workloads.
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Figure 2: Example histograms displaying the number of
writes per 64-bytememory location.A and B are examples of
memories with poor and perfect wear-leveling respectively.

3 TECHNIQUES TO INCREASE NVM
LIFETIME

The lifetime enhancing techniques discussed can be classi�ed in
two categories: write suppression and wear-leveling. The former
reduces the number of writes to the NVM main memory. Cache
compression and replacement policies are the two techniques we
explore that fall in this category. Nevertheless, there are other
ideas that can be considered as write suppression techniques. For
instance, the use of DRAM caches in Non-Volatile Dual In-line
Memory Modules (NVDIMM).

Wear-leveling evenly distributes the writes across the memory
space to ensure that speci�c locations do not wear out relatively
early compared to other locations. We say that a NVM memory
cell has worn out when it does not reliably retain the stored state.
If we consider that Figure 2 is a histogram displaying the number
of writes for every memory location in the NVM, the data points
in A are an example of poor wear-leveling. This is because very
few locations that are written too many times and will malfunction
much earlier than the majority of memory cells that are written
seldom. In contrast, the data points in histogram B show an NVM
that has perfect wear-leveling, since every location is written ap-
proximately the same number of times as every other location, and
we expect the lifetime of B to be higher than that of A.

Next, we study how di�erent techniques can be used as write
suppression or wear-leveling strategies to enhance the lifetime of
NVM main memories.

3.1 Cache Replacement Policies
In a conventional memory system, there is usually a cache hierarchy
with one or more levels between the processor and the main mem-
ory which reduces the latency of memory accesses, and decreases
the time that the processor is stalled. Therefore, most existing work
on replacement policies concentrates on improving the cache hit
ratio. We explore the use of replacement policies to reduce the write

tra�c from the cache hierarchy to the main memory, resulting in
extended NVM lifetime.

The challenge is to �nd a replacement policy that reduces the
write tra�c without signi�cantly hurting the hit ratio. Furthermore,
the policy should be simple enough to be e�ciently implemented in
an on-chip cache. There are few works that propose a replacement
policy for our purposes [31]. However, thanks to the widespread
use of NVM storage systems, such as �ash-based Solid State Drives
(SSD), there are several studies on replacement policies for DRAM
caches to reduce write tra�c to storage [9, 11, 17–19, 24, 29, 32, 33].
There are signi�cant di�erences between the NVM storage setting
and ours. In the former case, a system consisting of a host computer
connected to a storage device is assumed. The DRAM cache re-
placement policy is either implemented in a bu�er inside the NVM
storage device or the page cache maintained by the operating sys-
tem in main memory. In contrast, we evaluate replacement schemes
in an on-chip LLC, and require the policy to be operational there
(usually L2 or L3).

To predict the future access pattern of a cache line, DRAM-based
cache replacement policies consider valuable indicators other than
recency as is the case in Least Recently Used (LRU). For example,
Clean-First LRU (CFLRU) considers both recency and the clean or
dirty state of a cache line, and splits the cache into prede�ned, �xed
size regions: working and clear-�rst [24]. The former behaves as
a normal LRU cache, while the latter is similar to a write bu�er
because clean cache lines are given priority for eviction. Therefore,
large clean-�rst regions negatively impact the miss rate since fewer
clean lines are kept in the cache.

LRU Write Sequence Reordering (LRU-WSR) [11] is an alterna-
tive approach that tags dirty cache lines as hot or cold. LRU-WSR
gives dirty lines a "second chance" by migrating them to the Most
Recently Used (MRU) position and chosing to evict cold or clean
lines instead. The Cold-Clean-First LRU (CCF-LRU) [17] replace-
ment policy attempts to improve on both LRU-WSR and CFLRU
by considering the hot and cold state of both clean and dirty cache
lines. The algorithm maintains a list for dirty and hot clean lines
and a separate list for cold clean lines. The latter is given priority
for eviction, but if it is empty, a victim will be selected from the
former.

There are replacement policies that use learning rules to ad-
just the cache con�guration according to the access patterns of
the workload [20, 29]. The Adaptive Page Replacement Algorithm
(APRA) splits the cache in two sectors: the �rst sector behaves like
CFLRU, while the second, called ghost cache, only holds cache line
tags and the dirty �ag of lines evicted from the other sector. The
learning rule adjusts the size of the sectors at runtime to reduce the
probability of evicting dirty cache lines when data is written often
without signi�cantly impacting the miss rate [29]. Unfortunately
none of these schemes were designed for on-chip caches, thus it is
unclear whether their implementation is feasible in silicon. How-
ever, replacement policies of LLCs operate o� the timing critical
path and can use more complex replacement schemes.
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3.2 Cache Compression
The high access latencies of o�-chip memory have motivated the
widespread use of on-chip caches. However, the constraints inher-
ent to the memory technologies mean that microprocessor design-
ers must compromise on the amount of memory available on-chip
to enable suitable access latencies to the cache. Compression has
long been discussed as an alternative mechanism to increase the
e�ective size of the cache without actually adding memory cells
[1–3, 7, 8, 10, 27, 28]. In this case, the e�ective size refers to total
uncompressed size of the data stored in the cache. This idea is ap-
pealing for our purposes since it mitigates cache capacity misses
that ultimately result in write operations. That is, a compression
scheme could enlarge the e�ective capacity of the cache enough
such that the write tra�c from LLC to main memory is substan-
tially reduced, ultimately increasing the lifetime of the NVM main
memory.

Despite the obvious appeal, cache compression poses its own
set of challenges. It is imperative that the scheme is lossless, power
e�cient and its implementation requires low area. Furthermore,
the compression hardware must not degrade the performance of
the cache, speci�cally those operations that are typically in the
critical path of accesses to memory, such as decompression. It is
also desirable that the compression ratio is as large as possible
and that data can be randomly accessed at the granularity of an
uncompressed cache line.

In the literature, there are various proposals for cache compres-
sion schemes. Zero-Content Augmented Cache (ZC) [8] is perhaps
one of the simplest approaches. The designers of this scheme ob-
served that on some applications over 20% of memory accesses
concerning null data blocks. Therefore, ZC compresses cache lines
by storing the tags and discarding the null data. Despite its sim-
plicity, ZC achieves average compression ratios of approximately
1.5, yet its performance is largely workload dependent. Frequent
Pattern Compression (FPC) [2] is a slightly more complex approach
that matches the input data against a pre�x table of prede�ned pat-
terns. The compressed output consists of an index of the matching
pre�x in the table and some bytes. A similar approach, Frequent
Value Encoding (FVE), [34] replaces the pattern table by a dic-
tionary of values whose contents can be selected in advance or
updated dynamically. However, FVE was originally thought as a
compression scheme for data buses. The compression ratio of these
approaches is reported to lie between 1.5 and 2.8 depending on the
implementation details and benchmarks.

C-Pack [7] is a more re�ned dictionary-based scheme speci�cally
designed for on-chip caches. The algorithm matches the input data
against both statically decided patterns, and a dynamically con-
structed dictionary. Furthermore, a cache architecture, referred to
as pair matching, is also proposed to store cache lines depending on
their compressed ratio and that of their partner. It has been reported
that C-Pack can increase the e�ective cache size by approximately
a factor of 1.7.

There are works that also propose alternative cache compression
architectures and use existing compression algorithms [1, 27, 28].
These ideas have varying levels of success, but generally, they are
capable of improving the e�ective cache size by a factor in the
range of 1.5 to 2.5.

3.3 Wear-leveling
Contrary to the techniques previously discussed, wear-leveling is a
mechanism that is directly applied to the main memory itself. The
idea behind this technique is to evenly distribute the write oper-
ations across the memory space to ensure that the memory cells
degrade evenly. Wear-leveling is an approach often used to extend
the lifetime of �ash storage devices [4, 6, 12, 22]. The speci�cs vary
depending on the scheme and its application, but generally wear-
leveling is achieved by maintaining indirection tables from logical
to physical addresses. Additional tables may also be maintained to
track the write count of the storage blocks, and route subsequent
write operations to seldomly written locations. More sophisticated
algorithms, such as Rejuvenator [22], also aim to identify and regu-
larly migrate rarely written logical addresses to free least written
physical locations.

A number of wear-leveling schemes have also been proposed
for PCM based main memories [14, 25, 26, 35]. Row shifting is a
mechanism that reads and compares the memory block with data
to be written, then it only changes the value of the memory cells
that di�er [35]. Since this would result in uneven number of writes
across a memory row, the bits are periodically shifted. Similar
approaches have been proposed at di�erent levels of granularity.
For instance, when a virtual page is written to a PCM main memory,
only the cache lines that di�er need to be replaced. To ensure that
the device is worn-out evenly, cache lines are periodically rotated
within the boundaries of the virtual page [26]. Start-Gap is a wear-
leveling scheme for PCM main memories that aims to reduce the
size of the indirection tables commonly used for �ash wear-leveling
[25]. To do so, Start-Gap uses an algebraic mapping between logical
and physical addresses. The nature of the expression ensures that
the memory blocks are rotated across the whole memory space.

4 METHODOLOGY
We use state-of-the-art simulation tools and explore a large number
of con�gurations of the memory system. Data related to the caches
and the tra�c across the memory hierarchy is collected through-
out the process and later analyzed. The remaining of this section
describes our methodology in detail.

4.1 Experimental Setup
Our experiments are conducted using atomic models of server
systems developed upon the gem5 toolset [5]. Gem5 is an open-
source, modular platform that enables the user to simulate one
or more computer systems. It contains a large number of highly
con�gurable components that can be used to construct tailored
models for computer-system architecture research. In our case, we
use gem5 to simulate server workloads on 64-bit ARM systems,
and collect data about the tra�c across the memory hierarchy. In
particular, we are interested in the performance of the LLC, as well
as the volume and locations of read and write accesses from the
LLC to the main memory.

We experiment with a large number of cache con�gurations
with hierarchies of two and three levels deep and various sizes as
shown in Table 1. We are mainly interested in the tra�c generated
by a workload across the memory system. Therefore, we strive to
simplify other components to reduce the overall simulation time;
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Table 1: Cache con�gurations for simulated systems. In all
cases, the cache line size is 64-bytes.

L1 Cache L2 Cache L3 Cache
16 KB 512 KB -
32 KB 1 MB -
64 KB 2 MB -
64 KB 4 MB -
32 KB 256 KB 1 MB
32 KB 256 KB 2 MB
32 KB 256 KB 4 MB
32 KB 256 KB 8 MB
32 KB 256 KB 16 MB
32 KB 256 KB 32 MB
32 KB 256 KB 64 MB
32 KB 256 KB 128 MB
32 KB 256 KB 256 MB

for instance, the underlying processor selected is an atomic model
of a single 64-bit ARM core. As a result, we are able to experiment
with realistic workloads and a large set of memory con�gurations.
To avoid introducing noise due to virtual page swapping, we set
the size of the main memory to 16 GB, signi�cantly larger than the
memory footprint of any of the workloads.

4.2 Simulation and O�line Data
In general, our data gathering and analysis process can be divided in
two parts: online and o�ine. The former refers to the data gathering
performed while the simulation of the system is running in gem5.
At this stage, we record various pieces of information, including
(but not limited to) cache line miss and hit rate, dirty portion of
the cache over time and cache line utilization. Furthermore, we
collect the read and write memory access traces from the LLC to
the main memory after the virtual address of the operation has been
resolved. The trace data includes time, physical memory address,
size and type (read or write) of each access. When the simulation
terminates, we proceed to analyze the data o�ine using software
tools developed speci�cally for this project. These tools accept the
gem5 simulation output and memory access traces and transform
it into a manageable format for manual inspection.

Depending on the technique under evaluation, we make ad-
justments to the process described above. To explore replacement
policies, we implement four di�erent schemes, CFLRU, LRU-WSR,
CCF-LRU and APRA (see Section 3), in the LLC cache model in
gem5, and use them to compose the models for simulation. We
also conduct the experiments with the traditional LRU policy to
use it as a baseline for the other replacement policies. In the case
of cache compression, we compare the expected e�ective cache
size obtained from our literature survey to the simulation results
of systems simulated using LRU and various cache sizes. We are
then able to estimate the impact of larger cache capacities on the
lifetime of the NVM main memory. Finally, to estimate the impact
of wear-leveling techniques, we simulate the accesses described in
the traces to a main memory device that has some wear-leveling
scheme. We signi�cantly reduce the size of the main memory to
approximately 200 MB more than the memory footprint of the

workload to decrease the amount of overprovisioned memory. This
stresses the wear-leveling algorithms because they rely on migrat-
ing data to free memory locations when writes occur. Throughout
our evaluation, we compute the lifetime values for the di�erent
techniques for illustration purposes. Due to the nature of atomic
simulation in gem5, these times may have small inaccuracies that
are, however, insigni�cant to the orders of magnitude impacts of the
e�ects we are analysing; and the relative factors of improvement
remain correct.

4.3 Workloads
For this investigation, we have chosen the workloads Memcached
[21], Server-Side Java (SSJ) [30], PageRank [16] and Forest-�re [16]
running under Ubuntu 14.04 LTS. We select these server-type appli-
cations for our experiments due to their widespread use in industry.
Furthermore, they represent a broad selection of tasks commonly
performed by server machines, including database caching and
graph handling.

Memcached is an open-source, generic, distributed memory ob-
ject caching system [21]. It is mainly used to cache data loaded from
external data sources thus speeding up dynamic database-driven
applications. For our experiments, Memcached version 1.4.21 is
loaded in a server and requests are continuously sent from an in-
dependent client machine through an Ethernet connection. The
data transmitted corresponds to extracts from the popular social
network Facebook. The experiment is entirely simulated on gem5,
yet data is only collected for the server.

Server-Side Java (SSJ) is part of the SPECpower_ssj 2008 suite
[30]. This workload is an industry-standard benchmark to evaluate
performance characteristics of servers.

Finally, Forest-�re and PageRank are two graph workloads from
the Stanford Network Analysis Project (SNAP) version 2.4 [16]. The
former is a software that generates a graph based on the Forest-�re
model [15] with fordward and backward burning probabilities of 0.3
and 0.25 respectively. Finally, PageRank is the algorithm developed
by Larry Page and Sergey Brin to rank websites according to the
number and quality of their links [23]. We run PageRank on the
Webgraph from the 2002 Google programming context.

5 RESULTS
In this section, we present and analyze the results of our experi-
ments in four parts. Firstly, we pro�le the write tra�c generated
by our selected server workloads and evaluate the lifetime of a
system that does not have any countermeasures. The objective is to
estimate the magnitude of the endurance problem and set a suitable
baseline to quantify any improvements. The remaining three parts
of the section evaluate each of the techniques: cache replacement
policies, cache compression and wear-leveling. Furthermore, we
compare the improvements achieved by the techniques with each
other and draw conclusions.

5.1 Quantifying the Endurance Problem
NVM technologies have physical limitations that cause the memory
cells to degrade when certain operations are performed. We say
that a memory device has worn out when the �rst memory cell
malfunctions, and we de�ne lifetime as the interval of time between
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Figure 3: Lifetime of NVM main memory as endurance in-
creases for di�erent workloads running on a system with
cache sizes 32 KB, 256 KB, 8 MB for L1, L2 and LLC respec-
tively. The LLC replacement policy used is LRU.

the �rst usage until the �rst malfunction. Our purpose is to provide
an estimate instead of considering the speci�c properties of the
various NVM technologies.

The expected lifetime of a NVM main memory for di�erent en-
durance values is shown in Figure 3. Given that for modern NVM
technologies, including PCM and ReRAM, the endurance (writes till
bit cell failure) is in the range of 106-108 write operations, there is a
signi�cant lifetime gap compared to DRAM whose endurance bor-
ders 1016. Nevertheless, we consider that for NVM main memories
to be practical, we require their lifetime to be at least 5 years. This
is because after this time, most users of server-type hardware will
upgrade their equipment regardless of whether it is functional. In
this sense, the endurance gap is two or three orders of magnitude.
However, the information in Figure 3 can be used to calculate the
endurance gap for systems with di�erent service lifetime require-
ments.

5.2 Properties of Write Tra�c
To characterise the properties of write tra�c for our selected server
workloads, we �rst examine the distribution of instructions exe-
cuted by the software listed in Table 2. According to this informa-
tion, all workloads have similar proportions of memory accesses.
However, Forest-�re and Memcached are relatively write intensive
workloads since the proportion of their read and write accesses
is almost 1:1. This is expected since the former must constantly
modify the graph that it operates on as it creates communities be-
tween the nodes. Similarly, Memcached e�ectively converts the
main memory into a cache of database objects, which is potentially
updated whenever there is a client request.

After analyzing the main memory access traces as described in
Section 4, we are able to extract more detailed information regard-
ing the location and frequency of the accesses across the memory
space. We register the addresses of every cache line that is accessed.
Excluding duplicates and counting the modi�ed cache lines that

Figure 4: Number of writes per 64-byte memory location
when running Memcached on a system with cache sizes
32KB, 256KB, 8MB for L1, L2 and LLC respectively. The LLC
replacement policies used are LRU (top) and LRU-WSR (bot-
tom). A highly skewed graph indicates that a small portion
of the memory is damaged when the memory is declared
worn-out. Note the reduction to the most written location
when an alternative cache replacement policy is used.

are written back to main memory, we estimate the total memory
footprint for each workload as displayed in Table 2. In all cases,
the memory footprint of the server workloads is larger than the
added cache sizes of any con�guration we model by a factor of at
least 2 (see Section 4). We obtain the histograms shown in Figure 4
by computing the frequency of the writes to main memory for
each cache line. Despite having a large memory footprint, the write
tra�c generated by the workloads is skewed since less than 20%
of all cache lines are written more than 5 times. According to our
de�nition of wear out, this implies that less than a �fth of the NVM
is damaged when the memory is declared worn-out, while the ma-
jority is scarcely used. One cause of such uneven behaviour is the
common programming practice of storing the state information of
the software in memory locations that are frequently accessed and
updated as execution proceeds. For instance, in the implementation
of a linked list, the most commonly accessed locations are likely
to be the memory that stores the list size and the pointer to the
element at the head rather than the list contents.

5.3 LRU Cache Con�guration and Write Tra�c
We investigate the e�ect of the LRU associativity level and cache
size on the overall write tra�c from the LLC to the NVM main
memory. To evaluate the former, we simulate a three-level deep
cache hierarchy with sizes 32KB, 256KB and 8 MB respectively
and progressively increase the number of ways in the LLC from
16 until reaching full associativity. We observe that both the miss
rate and the generated write tra�c experience relatively small
variations of less than 15%. Therefore, we conclude that when the
associativity is increased over a threshold, evictions due to con�ict
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Table 2: Execution details for each server workload.

Workload Instructions Memory access instructions Read accesses Write accesses Memory footprint
Forest-�re 14 Billion 31% 54% 46% 564 MB
Memcached 64 Billion 33% 54% 46% 882 MB
PageRank 47 Billion 31% 62% 38% 836 MB
SSJ 22 Billion 34% 65% 35% 1.1 GB

misses are reduced to a minimum and do not impact the write tra�c
signi�cantly.

The second parameter of the cache con�guration that we modify
is the size of the LLC. In this case, we conduct experiments with a
three-level cache hierarchy where the L1 and L2 sizes are �xed to
32KB and 256KB respectively. In contrast, the L3 size varies from
1 MB to 256 MB. Figure 5 illustrates the change in the write traf-
�c from LLC to NVM main memory as the cache size increases.
Memcached exhibits a rather exceptional behaviour since there is
signi�cant decrease in the write tra�c as the cache size increases. In
contrast, the other server workloads show a rather steady decrease.
The average write tra�c reduction is about 15% with each doubling
of the cache size. In reality, it is di�cult to envision the implementa-
tion of on-chip caches large enough to close the lifetime gap shown
in Figure 3. For this reason, we consider that the improvement
achieved by increasing the size of the on-chip cache alone is not
signi�cant enough to enable the usage of NVM technologies as
main memory.

If we consider that in the best case, we only write each cache line
to main memory exactly once, then we can think of the memory
footprint as the ideal target for write tra�c reduction. That is, in
the best case, the total size of the data written to main memory
equals the memory footprint of the workload. Figure 6 shows the
ratio between these two metrics as the cache size increases for
each server workload. With the exception of size 256 MB, the write
tra�c generated is at least twice at much as the ideal case for most
workloads. This indicates that there is scope to study techniques,
such as cache replacement policies, that suppress write operations
from the LLC to the main memory.

To explore the causes of the rather limited reduction of write
tra�c, we instrument the gem5 simulator to record the percentage
of the LLC that is dirty over time. We set the sampling rate at 10 mil-
lion memory accesses and run the experiment once again. Figure 7
shows the results and provides some insight on the memory access
patterns of these server workloads. In these graphs, an increasing
trend translates in cache lines being written, while a decrease cor-
responds to dirty cache lines being evicted and written back to
main memory. Therefore, continuous �uctuation in the graphs is
undesirable because the cache lines are continuously written and
evicted. From this, it can be seen that some workloads such as Mem-
cached and SSJ have signi�cantly better memory access patterns
in the sense that it is easier for the cache to predict which data
will be reused. As a result, for those workloads, we can expect that
increasing the cache size could be an e�ective mechanism to reduce
the overall write tra�c. In contrast, PageRank and Forest-�re have
seemingly random access patterns and many write-heavy phases.
This is expected because they are graph workloads and the shape
of the input data largely dictates their behaviour.

Figure 5: E�ect of the cache size on write tra�c from LLC
to main memory. In all cases the LLC replacement policy is
LRU and the L1 and L2 cache sizes are 32 KB and 256 KB
respectively.

Figure 6: Ratio between memory footprint and data written
to mainmemory as cache size increases. In all cases the LLC
replacement policy is LRU and the L1 and L2 cache sizes are
32 KB and 256 KB respectively.

5.4 Cache Replacement Policies
As described in Section 4, we implement and simulate four replace-
ment policies in gem5: CFLRU, LRU-WSR, CCF-LRU and APRA (see
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Figure 7: Percentage of the LLC that is dirty overtime for
di�erent cache sizes while running Memcached (top) and
PageRank (bottom). In all cases the LLC replacement policy
is LRU and the L1 and L2 cache sizes are 32 KB and 256 KB
respectively.

Section 3). We consider that these schemes provide a representa-
tive sample of all replacement policies, enabling us to obtain an
estimate of the lifetime improvement that could be achieved by
using alternatives to the traditional LRU. Figure 8 shows the e�ect
of each policy in write tra�c and miss rate compared to LRU. With
some exceptions, in general, the write tra�c reduction is below
10%, and the miss rate remained mostly unchanged compared to
LRU. This is not unexpected because all these policies are largely
based on LRU with some modi�cations. That is, since there is little
variation in the miss rate, we can assume that to some extent the
data maintained in the cache by the replacement policies at any
point in time is similar to the data in the LRU cache. The small
tra�c write reductions corresponds to the few cache lines that are
frequently evicted by LRU, but not by the other policies. CCF-LRU is
the only replacement policy that provides signi�cant improvements
in write tra�c, especially for the heavily write-phased workloads.
Nevertheless, it achieves this at the expense of a signi�cantly worse
miss rate compared to LRU as illustrated in Figure 8. The likely
cause of this compromise is that some of our server workloads
are relatively write-intensive. Therefore, CCF-LRU encountered a
large number of hot cache lines, which were rarely evicted from
the cache causing starvation of clean lines.

Comparing the distribution of writes across the memory space,
it can be seen from Figure 4 that the cache replacement policies
have acted as a form of wear-leveling technique. Despite the small
reduction in write tra�c from LLC to main memory compared
to LRU, the replacement policies have retained frequently written
lines longer within the cache while evicting seldomly written data.
On average, the writes from LLC to main memory for the most
frequently written locations has decreased by over 70%.

Figure 8: The impact of di�erent cache replacement policies
and LLC sizes in write tra�c compared to LRU. In all cases
the L1 and L2 cache sizes are 32 KB and 256 KB respectively.

5.5 Cache Compression
From the literature survey presented in Section 3, we can conclude
that on average we could approximately double the e�ective size
of the cache by using some compression scheme.1 Comparing this
information with the data in Figure 5 we observe that the reduction
in write tra�c would be 15% on average. For instance, if we consider
that the physical size of our LLC is 8 MB, with cache compression
the e�ective size would be about 16 MB. However, to obtain a 20%
reduction in write tra�c, we would need an e�ective size of 32 MB.
Since we have not found evidence that we can quadruple the cache
capacity using compression, we consider that this technique on its
own is not enough to enable the use of NVM main memories.

5.6 Wear-leveling
As discussed in Section 4, we run post processing tools on the
memory access traces collected during simulation. In this way, we
are able to estimate the performance of wear-leveling schemes.
We evaluate two algorithms, we call these perfect and basic wear-
leveling. The former is an ideal solution that guarantees that given
any two memory locations, the di�erence in write count is at most
one. E�ectively, the lifetime of the system can be calculated using
the formula

Li f etimeInSecs = MemEndurance/WritesPerSec

where MemEndurance is the endurance factor for the NVM tech-
nology in question andWritesPerSec is the ideal number of write
operations for each memory location per second. If we consider that
every memory location is written before the �rst memory location
is written once again, thenWritesPerSec is the number of times in a
1Estimating a more accurate gain requires analyzing the details of the speci�c scheme,
implementation and target workloads. However, our intention is to estimate the write
tra�c reduction from LLC to NVM main memory rather than selecting a speci�c
compression scheme. Thus, this value is enough for our purposes.
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second that any memory cell is written. This wear-leveling scheme
is impractical because it assumes that on every write there is a free
location whose write count is smaller than that of other locations.
However, we consider this scheme to be the upper bound on life
improvement that can be achieved using wear-leveling techniques.

The basic algorithm dynamically changes the physical location
of the data whenever it is written. It maintains an indirection table
that maps logical to physical addresses, and tracks the locations
that are empty. The data movements are illustrated in Figure 10.
Whenever there is a write to some logical address, the previous
mapping for that address in the indirection table is invalidated
and the data is stored in the next free location. Since the memory
space is 200 MB larger than the memory footprint, the algorithm
only has this small amount of overprovisioned memory to migrate
data on write operations. For simplicity, the granularity of the data
migrations is 64 bytes, the same size as an LLC cache line. Note
that in our experiments, the memory size is �xed. Increasing the
memorycapacity is a technique commonly known as overprovision-
ing, and it is commonly used in conjunction with wear-leveling to
increase the NVM endurance. However, overprovisioning is outside
the scope of this study.

The results of our experiments are illustrated in Figure 9. The
plot shows three sets of data: the perfect wear-leveling with the
best endurance values as expected; the results of the basic wear-
leveling algorithm; and �nally, the absence of any wear-leveling
scheme. The data shows that the perfect wear-leveling scheme
achieves improvements between two and three orders of magnitude.
Furthermore, the lifetime increase factor is reduced as the cache
size increases because the working dataset can be mostly cached.
Despite the constrained main memory size, the basic algorithm
improves the lifetime by one to two orders of magnitude over a
system with no wear-leveling depending on the LLC replacement
policy.

Another observation in Figure 9 is that the di�erence between the
basic and the perfect algorithms is about one order of magnitude in
lifetime. The performance of the basic scheme is not greater because
of sparsely written (static) memory locations are not migrated often.
That is, if we classify memory locations as shown in Figure 10, then
locations that are repeatedly written are frequently remapped to
free physical addresses. However, the static locations are migrated
seldomly and prevent the wear-leveling algorithm from degrading
those memory cells as fast as the rest of the memory. Identifying
static locations is complex and can also result in worse lifetime if
data is migrated too often.

Figure 9 also shows the lifetime resulting from the use of the
cache replacement policies in Section 3. Whenever wear-leveling
is absent, the lifetime while using alternative replacement policies
is superior to simply using LRU by an order of magnitude. This
occurs because the LLC retains the most frequently written lines
longer than an LRU cache, acting as a wear-leveling mechanism (see
Figure 4). If wear-leveling is used, the di�erence in performance
between replacement policies is negligible, so only the lifetime of
a system using LRU is displayed in Figure 9. This occurs because
the write tra�c is mainly what directly impacts the result of wear-
leveling rather than the speci�c memory locations written.

Figure 9: Lifetime of NVM main memory as endurance in-
creases while using di�erent wear-leveling algorithms and
LLC replacement policies. Memcached running on a system
with cache sizes 32 KB, 256 KB, 8 MB for L1, L2 and LLC re-
spectively.

Data movement

Empty

Write intensive

Static data

Figure 10: Classi�cation of memory locations as seen by the
wear-leveling algorithm and direction of data movement on
write operations.

5.7 Combining Techniques
Figure 1 shows the improvements that result from combining mul-
tiple techniques into the same system. Wear-leveling increases
lifetime by at least two orders of magnitude on average, and is the
technique that contributes the most. Furthermore, it can also be
seen that if wear-leveling is present, the e�ect of the other two
techniques is minimal. In the absence of wear-leveling, the cache
replacement policies increase lifetime by about one order of magni-
tude, approximately twice as much as cache compression.

6 FUTUREWORK
In future work we will focus on exploring wear-leveling algorithms
closer to the perfect scheme. DRAM caches in NVDIMMs can be
used to capture writes instead of directly using the NVM, and re-
placement policies and cache compression schemes can be explored
with DRAM caches. Their sizes will be signi�cantly larger than
those of realistic LLCs, and the policies may therefore have a larger
impact. DRAM caches may also be managed by the operating sys-
tem or the applications directly, and we want to investigate the
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opportunity for more complex and application-speci�c policies at
the cost of larger (page-sized) granularities.

7 CONCLUSION
High density, low power consumption and cost are some of the
features that present NVM technologies as a promising candidate
for future main memory devices. However, NVM also introduces
serious practical challenges due to its low write endurance. Our
experiments show that there is an endurance gap of two to three
orders of magnitude to ensure a lifetime greater than �ve years for
technologies such as PCM and ReRAM. To understand the causes
of the problem, we pro�le the write tra�c from the LLC to main
memory generated by server workloads. The data shows that in all
cases the memory footprint is signi�cantly larger than the size of
the on-chip caches. Furthermore, irregular access patterns of graph
workloads, such as PageRank and Forest-�re, make it harder to
suppress writes with the limited information available to the cache.
We also �nd that the distribution of write accesses is uneven across
the memory space, despite �ltering though a typical cache hierar-
chy; very few locations are written often while the vast majority is
rarely written.

We investigate the use of three techniques to increase the NVM
lifetime. Firstly, we implement cache replacement policies in the
LLC di�erent from the traditional LRU. The objective is to reduce
the number of write operations from LLC to main memory without
negatively impacting the hit rate. Through experimentation, we �nd
that on average the reduction in write tra�c is about 10% compared
to using LRU. Nonetheless, these replacement policies decrease the
di�erence between the most and least written memory locations,
which results in an improved lifetime of approximately an order of
magnitude. That is, for a PCM main memory with endurance 107,
the lifetime increases from 12 days to 6 months for Memcached.

The second technique we investigate is compression as a means
to increase the e�ective cache size and decrease writes to NVM
resulting from evictions due to capacity misses. We estimate that
using compression we could double the e�ective cache size, yet we
�nd that this achieves a modest write reduction by 15%. This trans-
lates to a lifetime improvement of less than an order of magnitude,
which, for instance, increases the lifetime of PCM from 12 days
to 2 months. This is insu�cient to guarantee a reasonable service
life, let alone the added delay in the data path for compression and
decompression.

Finally, we experiment with wear-leveling schemes applied to
the main memory itself to evenly distribute the writes across the
full memory space and avoid wearing out a small subset of the
device. We experiment with a dynamic algorithm and achieve an
improvement of up to two orders of magnitude over a system with-
out any countermeasures to extend lifetime. Furthermore, we �nd
that the main obstacle to mitigate the endurance problem with this
approach is the static locations that are seldomly written by the
workloads. This is because if the data is rarely written back, that
location will not be worn out, and the algorithm has less space
to manoeuvre. We estimate that the theoretical best case lifetime
improvement that could be achieved with wear-leveling is about
three orders of magnitude. For illustration, wear-leveling could in-
crease the lifetime from 12 days to 15 years for a PCM main memory

with endurance 107. We conclude that wear-leveling techniques
are essential to ensure reasonable service lifetimes for NVM main
memories.
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