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“As the lockdown measurements get relaxed gradually, it’s clear that stricter lockdown rules 
can help governments manage the pandemic but can also hurt the economy. Likewise, stricter 
ordering rules for memory operations help simplify programming but can also hurt 
performance. In this joint work with the University of Michigan, we explore relaxing the 
ordering rules of persist operations to non-volatile memories for improved performance.” 
 
BACKGROUND 
 
Memory consistency models define the ordering of loads and stores to non-overlapping 
addresses in memory. Likewise, memory persistency models define the ordering of persists to 
non-overlapping addresses in persistent memory [5]. The current Arm Instruction Set 
Architecture (ISA) has rather relaxed memory consistency models [10] and the ordering of 
persists, such as the DC CVAP instruction, follows epoch persistency [5]. In this joint work 
with the University of Michigan [1], we explore the more relaxed strand memory persistency 
model [5] to relax persist ordering for improved performance. The exploration for performance 
improvement via relaxed persist ordering is important, as non-volatile memory becomes real 
with Arm-based systems, and the language extensions and libraries to support persistent 
programming introduce significant performance overheads [8]. 
 
Like memory consistency models, memory persistency models can be defined at both the 
language level and the ISA level [2, 4]. The language level models can be stricter than, or the 
same as, the ISA level models. Memory persistency models explore the design space with the 
granularity of failure atomicity and the strictness of persist ordering as shown in Figure 1. 
 

 



Figure 1. Memory persistency models at language and ISA levels. The ISA level persistency 
models are defined at the persist operations level, such as the DC CVAP instruction [7] as 
introduced in Armv8.2-A. The language level persistency models can be defined at coarser 
granularities, such as the synchronization free regions (i.e., SFR [3]) or outer critical sections 
(i.e., ATLAS [6]). 
 
With language level persistency models, failure atomicity is often provided by undo-logging 
stores inside failure atomic sections (FASE), as exemplified in Figure 2. 
 
FASE  
{ 
  Write log-A; 
  Persist log-A; 
  Fence; 
  Write A; 
  Persist A; 
  Fence; 
 
  Write log-B; 
  Persist log-B; 
  Fence; 
  Write B; 
  Persist B; 
  Fence; 
} 
 
Figure 2. Undo logging for failure atomic sections (FASE) 
 
The programmer needs only to specify the start and end of the failure atomic sections in the 
program, as shown below. The undo logging as well as the persist and fence operations can be 
instrumented by compilers, as highlighted in blue in Figure 2. 
 
FASE       
{ 
  Write A; 
  Write B; 
} 
 
Figure 3. Programmer needs only to specify the start and end of the failure atomic sections. 
 
In Figure 2, if we allow memory persistency to be decoupled from memory consistency, the 
only persist ordering required within the FASE is between the persist of log write and the 
persist of data write in-place, as shown in Figure 4. In addition, all persists may need to be 
completed before the FASE can be committed. 
 



 
Figure 4. Ideal ordering of persists. All persists may need to be completed before the FASE 
can be committed. 
 
When compiled for Armv8.2-A, the instrumented failure atomic section will feature three data 
synchronization barriers (DSBs) as shown in Figure 5. DSB is a fence that orders loads/stores 
as well as DC CVAPs before and after the barrier. The first DSB introduces unnecessary persist 
ordering between log-A and log-B, the second DSB introduces unnecessary persist ordering 
between A and B, as shown in Figure 6. The third DSB is to ensure all persists are completed 
when the failure atomic section can be committed. 
 
FASE  
{ 
  STORE log-A; 
  DCCVAP log-A; 
  DSB; 
  STORE A; 
  DCCVAP A; 
 
  STORE log-B; 
  DCCVAP log-B; 
  DSB; 
  STORE B; 
  DCCVAP B; 
 
  DSB; 
} 
 
Figure 5. Compiler instrumented failure atomic section for Armv8.2-A. 
 



 
 
Figure 6. The first DSB introduces unnecessary persist ordering between log-A and log-B. The 
second DSB introduces unnecessary persist ordering between A and B. Both are highlighted in 
red. 
 
PROBLEM and SOLUTION 
 
The DSB introduces unnecessary ordering between section A and section B, as it orders all 
memory operations before and after the barrier. Strand persistency [1, 5] removes this 
unnecessary ordering, so that section A and section B can be decoupled into two different 
strands that have no implied ordering between them. The ordering between the log write/persist 
and in-place data write/persist is only required within each strand. Also, both strands A and B 
may need to be completed before the FASE can be committed. To specify this exact ordering, 
in this paper we propose three additional ISA primitives: 
 

• PersistBarrier 
• NewStrand 
• JoinStrand 

 
The failure atomic section as shown in Figure 3 can then be instrumented with the new ISA 
primitives as shown in Figure 7. The ideal ordering as specified in Figure 4 can then be 
implemented with the new ISA primitives as shown in Figure 8. 
 
FASE  
{ 
  STORE log-A; 
  DCCVAP log-A; 
  PersistBarrier; 
  STORE A; 
  DCCVAP A; 
 
  NewStrand 
  STORE log-B; 
  DCCVAP log-B; 
  PersistBarrier; 
  STORE B; 
  DCCVAP B; 



 
  JoinStrand 
} 
 
Figure 7. Compiler instrumented failure atomic section with strand persistency ISA primitives.  
 

 
 
Figure 8. Strand persistency removes unnecessary ordering between strands with NewStrand, 
while providing PersistBarrier to order persists within strands and JoinStrand to synchronize 
persists across strands. Strand persistency can achieve the ideal persist ordering as shown in 
Figure 4. 
 
RESULTS, IMPACT and FUTURE WORK  
 
We implemented the microarchitecture to support the ISA primitives in gem5 and evaluated 
the performance impact on language-level persistency models such as the coupled and 
decoupled SFRs [3]. Strand persistency improves the performance of language persistency 
models by 45% on average. Details can be found in our ISCA’2020 paper [1]. 
 
The performance gain can potentially be seen across a wide range of persistent applications 
that leverage undo logging for failure atomicity, including most current software transactional 
memory libraries and language extensions for persistent memory, such as PMDK, NVM-Direct 
and go-pmem.  
 
In addition to reducing the performance overhead due to persist ordering as addressed in this 
work, we are also interested in further performance optimizations in the architecture and 
microarchitecture for persistent programming, such as reducing the performance overheads of 
persisting, logging, and translations [8]. In addition to performance optimizations, we are also 
interested in helping address the persistent programming challenges with the necessary 
architectural and microarchitectural support [9]. 
 
TALK VIDEO AND PAPER  
 
If you’re interested in finding out more about the paper and our presentation of this work at 
ISCA 2020, please follow the following links. 



 
Link to the talk video: https://isca2020.wistia.com/medias/lmx8ueqknj 
Link to the paper: https://www.iscaconf.org/isca2020/papers/466100a652.pdf 
Contact William Wang mailto:william.wang@arm.com 
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