
Relaxed Persist Ordering Using Strand Persistency

Vaibhav Gogte
University of Michigan, USA

vgogte@umich.edu

Peter M. Chen
University of Michigan, USA

pmchen@umich.edu

William Wang
Arm Research, UK

william.wang@arm.com

Satish Narayanasamy
University of Michigan, USA

nsatish@umich.edu

Stephan Diestelhorst
Xilinx DCG, UK§

stephand@xilinx.com

Thomas F. Wenisch
University of Michigan, USA

twenisch@umich.edu

Abstract—Emerging persistent memory (PM) technologies
promise the performance of DRAM with the durability of
Flash. Several language-level persistency models have emerged
recently to aid programming recoverable data structures in PM.
Unfortunately, these persistency models are built upon hardware
primitives that impose stricter ordering constraints on PM oper-
ations than the persistency models require. Alternative solutions
use fixed and inflexible hardware logging techniques to relax
ordering constraints on PM operations, but do not readily apply
to general synchronization primitives employed by language-level
persistency models. Instead, we propose StrandWeaver, a hard-
ware strand persistency model, to minimally constrain ordering
on PM operations. StrandWeaver manages PM order within a
strand, a logically independent sequence of operations within a
thread. PM operations that lie on separate strands are unordered
and may drain concurrently to PM. StrandWeaver implements
primitives under strand persistency to allow programmers to
improve concurrency and relax ordering constraints on updates
as they drain to PM. Furthermore, we design mechanisms that
map persistency semantics in high-level language persistency
models to the primitives implemented by StrandWeaver. We
demonstrate that StrandWeaver can enable greater concurrency
of PM operations than existing ISA-level ordering mechanisms,
improving performance by up to 1.97× (1.45× avg.).

Index Terms—Persistent memories, memory persistency,
strand persistency, failure atomicity, language memory models

I. INTRODUCTION

Persistent memory (PM) technologies, such as Intel and

Micron’s 3D XPoint, are here [1]—cloud vendors have al-

ready started public offerings with support for Intel’s Optane

DC persistent memory [2, 3, 4]. PMs combine the byte-

addressability of DRAM and durability of storage devices.

Unlike traditional block-based storage devices, such as hard

disks and SSDs, PMs can be accessed using a byte-addressable

load-store interface, avoiding the expensive software layers

required to access storage, and allowing for fine-grained PM

manipulation.
Because PMs are durable, they retain data across failures,

such as power interruptions and program crashes. Upon failure,

the volatile program state in hardware caches, registers, and

DRAM is lost. In contrast, PM retains its contents—a recov-
ery process can inspect these contents, reconstruct required

volatile state, and resume program execution [5, 6, 7, 8].

§Work done while at Arm Research, Cambridge, UK

Several persistency models have been proposed in the past to

enable writing recoverable software, both in hardware [9, 10]

and programming languages [11, 12, 13, 14, 15]. Like prior

works [16, 17, 18], we refer to the act of completing a store

operation to PM as a persist. Persistency models enable two

key properties. First, they allow programmers to reason about

the order in which persists are made [16, 18, 17, 19]. Similar

to memory consistency models [20, 21, 22, 23, 24], which

order visibility of shared memory writes, memory persistency

models govern the order of persists to PM. Second, they enable

failure atomicity for a set of persists. In case of failure, either

all or none of the updates within a failure-atomic region are

visible to recovery [25, 26, 27, 28].

Recent works [11, 12, 29, 13, 27, 26, 13, 30, 31] extend

the memory models of high-level languages, such as C++

and Java, with persistency semantics. These language-level

persistency models differ in the synchronization primitives

that they employ to provide varying granularity of failure

atomicity. These persistency models are still evolving and

are fiercely debated in the community [26, 27, 29, 11, 12,

13, 32]. Specifically, ATLAS [11], Coupled-SFR [12, 30],

and Decoupled-SFR [12, 30] employ general synchronization

primitives in C++ to prescribe the ordering and failure atom-

icity of PM operations. Other works [29, 27, 26, 25] ensure

failure atomicity at a granularity of transactions using software

libraries [27, 26, 25] or high-level language extensions [29].

These language-level models rely on low-level hardware

ISA primitives to order PM operations [9, 10]. For instance,

Intel x86 systems employ the CLWB instruction to explicitly

flush dirty cache lines to the point of persistence and the

SFENCE instruction to order subsequent CLWBs and stores

with prior CLWBs and stores [9]. Under Intel’s persistency

model, SFENCE enforces a bi-directional ordering constraint

on subsequent persists and introduces high-latency stalls until

prior CLWBs and stores complete; SFENCE imposes stricter

ordering constraints than required by language-level models.

Prior research proposals relax ordering constraints by

proposing relaxed persistency models [16, 33, 18] in hardware

and/or building hardware logging mechanisms [34, 35, 36, 37]

to ensure failure-atomic updates to PM. These works propose

relaxed persistency models, such as epoch persistency [18,

28, 19], that implement persist barriers to divide regions of

652

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA)

978-1-7281-4661-4/20/$31.00 ©2020 IEEE
DOI 10.1109/ISCA45697.2020.00060

code into epochs; they allow persist reordering within epochs

and disallow persist reordering across epochs. Unfortunately,

epoch persistency labels only consecutive persists that lie

within the same epoch as concurrent. It fails to relax ordering

constraints on persists that may be concurrent, but do not

lie in the same epoch. In contrast, hardware logging mecha-

nisms [34, 36, 35, 38] aim to provide efficient implementations

for ensuring failure atomicity for PM updates in hardware.

These works ensure failure atomicity for transactions by emit-

ting logging code for PM updates transparent to the program.

These mechanisms impose fine-grained ordering constraints

(e.g. , between log and PM updates) on persists but propose

fixed and inflexible hardware that fails to extend to a wide

range of evolving language-level persistency models.

In this work, we propose StrandWeaver, which formally

defines and implements the strand persistency model to min-

imally constrain ordering on persists to PM. The principles

of the strand persistency model were proposed in earlier

work [16], but no hardware implementation, ISA primitives,

or software use cases have yet been reported. The strand

persistency model defines the order in which persists may

drain to PM. It decouples persist order from the write visibility

order (defined by the memory consistency model)—memory

operations can be made visible in shared memory without

stalling for prior persists to drain to PM. To implement strand

persistency, we introduce three new hardware ISA primitives

to manage persist order. A NewStrand primitive initiates a new

strand, a partially ordered sequence of PM operations within

a logical thread—operations on separate strands are unordered

and may persist concurrently. A persist barrier orders persists

within a strand—persists separated by a persist barrier within

a strand are ordered. Persist barriers do not order persists that

lie on separate strands. A JoinStrand primitive ensures that

persists issued on the previous strands complete before any

subsequent persists can be issued.

StrandWeaver proposes hardware mechanisms to build the

strand persistency model upon these primitives. StrandWeaver

implements a strand buffer unit alongside the L1 cache that

manages the order in which updates drain to PM. The strand

buffer unit enables updates on different strands to persist

concurrently to PM, while persists separated by persist barriers

within a strand drain in order. Additionally, StrandWeaver

implements a persist queue alongside the load-store queue

to track ongoing strand persistency primitives. The persist

queue guarantees persists separated by JoinStrand complete

in order even when they lie on separate strands.

StrandWeaver decouples volatile and persist memory order

and provides the opportunity to relax persist ordering even

when the system implements a conservative consistency model

(e.g. , TSO [39]). Unfortunately, programmers must reason

about persist order at the abstraction of the ISA, making

it burdensome and error-prone to program persistent data

structures. To this end, we integrate the ISA primitives intro-

duced by StrandWeaver into high-level language persistency

models to enable programmer-friendly persistency semantics.

We build a logging design that employs StrandWeaver’s

primitives to enforce only the minimal ordering constraints

on persists required for correct recovery. We showcase the

wide applicability of StrandWeaver primitives by integrat-

ing our logging with three prior language-level persistency

models that provide failure-atomic transactions [29, 26, 27],

synchronization-free regions [12, 30], and outermost critical

sections [40, 11], respectively. These persistency models pro-

vide simpler primitives to program recoverable data structures

in PM—programmer-transparent logging mechanisms layered

on top of our StrandWeaver hardware hide low-level hardware

ISA primitives and reduce the programmability burden.

In summary, we make the following contributions:

• We formally define primitives for strand persistency that

enable relaxed persist order, decoupled from visibility of

PM operations.

• We propose StrandWeaver, hardware mechanisms to im-

plement the primitives defined by the strand persistency

model. Specifically, we show how the strand buffer unit

and persist queue can order and schedule persists concur-

rently.

• We build logging designs that rely on low-level hardware

primitives proposed by StrandWeaver and integrate them

with several language-level persistency models.

• We demonstrate how StrandWeaver relaxes persist order,

resulting in a performance improvement of up to 1.97×
(1.45× average) over Intel’s persistency model [9] and

up to 1.55× (1.20× average) over the state-of-the-art

implementation [19] of the epoch persistency model.

II. OVERVIEW AND MOTIVATION

We now present an overview of memory persistency models.

A. Language-Level Persistency Models

Language-level persistency models define persistency se-

mantics for high-level programming languages such as C++

and Java [11, 12, 15, 13, 30, 31, 41, 42]. They prescribe persist

ordering constraints in PM and provide failure atomicity to

ensure that either all or none of the updates are visible

to recovery after failure. These persistency models rely on

synchronization primitives in languages to provide persistency

semantics. For instance, ATLAS [11] assures failure atomicity

of outermost critical sections—code region bounded by lock

and unlock operations in lock-based programs. It also ensures

inter-thread persist order using synchronizing lock and unlock

operations. Similarly, SFR-based persistency models [12, 30]

assure failure atomicity for synchronization-free regions—

regions of code delimited by low-level synchronization opera-

tions, such as acquire and release—and order persists using

these synchronizing acquire and release operations. Other

models [29, 26, 27, 43, 25] provide failure atomicity for

transactions and order persists using external synchronization.

These persistency models build compiler frameworks or

software libraries to map high-level semantics in languages to

low-level hardware ISA primitives. Figure 1(a) shows example

code for a failure-atomic region in ATLAS enclosed by lock

and unlock operations. ATLAS instruments each store with

653

A
C

B
(e)log(LA,A)

clwb(LA)
sfence

store(A,1)
clwb(A)

log(LB,B)
clwb(LB)

sfence
store(B,1)
clwb(B)

(a) (d)(b) (c)

l.lock()

store(A,1)
store(B,1)

l.unlock()

Failure-
atomic region

Visibility
order

Persist
order

Visibility
order

Persist
order

LA

LB

SA

SB

LA

LB

SA

SB

LA

LB

SA

SB

LA

LB

SA

SB

Persist(A)
PB

Persist(B)
Persist(C)

(f)

A

CB

Persist(A)
Persist(C)
PB

Persist(B)
(g)

A C

B

Fig. 1: (a) Example failure-atomic region in ATLAS bounded by lock and
unlock operations, (b) ATLAS logging using Intel’s ISA extensions for PM,
(c) Visibility and persist ordering of logs and in-place updates on a TSO
system, (d) Ideal persist ordering constraints sufficient for correct recovery,
(e) Desired order on persists A, B, and C, (f) Persist barrier (PB) additionally
orders persists A and C, (g) PB additionally orders persists C and B.

undo logging to assure failure atomicity. On failure, recovery

inspects undo logs and rolls back partially executed failure-

atomic regions. For correct recovery, logs need to persist

before in-place updates are made to PM—ATLAS relies on

low-level hardware ISA primitives to assure this ordering.

Unfortunately, hardware imposes stricter ordering constraints

than required by these persistency models for correct recovery.

B. ISA-Level Persistency Mechanisms

Modern hardware systems implement hardware structures to

reorder, coalesce, elide, or buffer updates, which complicate

ordering persists to PM [16, 44, 28]. For instance, write-back

caches lazily drain dirty cache lines to memory—ordering

visibility of stores to the write-back caches does not imply

that the PM writes are ordered.

Similar to memory consistency models, which reason about

visibility of memory operations, memory persistency models

specify the order in which updates persist to PM. Pelley et
al. [16] propose strict and relaxed persistency models to spec-

ify persist ordering. Strict persistency couples store visibility

to the order in which they persist to PM—persist order follows

the visibility order of PM operations. Unfortunately, strict

persistency has a high performance overhead as it restricts

persist concurrency especially under conservative consistency

models, such as TSO, which strictly order visibility of stores.

Relaxed persistency models decouple persist order from

the order in which memory operation become visible. Epoch

persistency introduces persist barriers that divide program

execution into epochs. Persists within epochs can be issued

concurrently, while persists separated by a persist barrier are

ordered to the PM. Several implementations [18, 9, 19, 28, 45],

including Intel’s x86 ISA, build epoch persistency models.

Intel’s persistency model. Intel x86 systems employ CLWB

(or CLFLUSHOPT in older systems) instructions [9] to explicitly

flush dirty cache lines to an asynchronous data refresh (ADR)-

supported PM controller [46]. In case of power failure, an

ADR-supported PM controller flushes pending operations to

PM. SFENCE acts as a persist barrier that orders any subsequent

CLWBs with the preceding CLWBs. Additionally, SFENCE also

orders visibility of subsequent stores after the preceding CLWBs

complete to ensure stores do not drain from write-back caches

to PM before prior CLWBs finish.

Limitations. Persist concurrency is limited by the size

of epochs [18]. Although CLWBs within an epoch can flush

data concurrently to PM, SFENCE enforces stricter ordering

constraints on persists, which are not required for ensuring

correct recovery. Any subsequent stores and CLWBs that are

independent and can be issued concurrently to the PM are

serialized by SFENCE. SFENCE causes long-latency stalls as it

delays visibility of subsequent stores until prior CLWBs flush

data to the PM controller.

Example. Figure 1(b) shows example undo logging code

for the ATLAS’s persistency model to ensure failure atom-

icity of updates to PM locations A and B on an Intel x86

system. Undo logging requires pairwise ordering of logs and

a subsequent store—logs must persist before corresponding

updates for correct recovery. Note that logs LA and LB (and

similarly, updates to locations A and B) can persist to PM

concurrently, as shown in the ideal persist ordering constraints

in Figure 1(d). Unfortunately, SFENCE orders log creation

and flush to LA with log creation and flush to LB . Under

Intel’s TSO consistency model [39], visibility of stores is

ordered (visibility of LA and SA is ordered in Figure 1(c)).

SFENCE additionally restricts visibility of subsequent stores

until prior CLWBs complete—SA is not issued until LA persists.

Thus, Intel’s persistency model imposes stricter constraints on

visibility and persist order that are not required for recovery

by language-level models.

C. Limited Persist Concurrency

Epoch size limits persist concurrency, as language-level

persistency implementations instrument each store within a

failure-atomic region with a log operation followed by an

SFENCE. Alternatively, log operations may be grouped within

an epoch before PM updates are issued. Unfortunately, it

is challenging to group persists, whether via static compiler

mechanisms or in expertly handcrafted software libraries.

Compiler optimizations. The presence of ambiguous mem-

ory dependencies make it challenging for compilers to perform

static analysis at compile time [47, 48, 49] to coalesce log-

ging operations within failure-atomic regions. Even with ideal

compiler mechanisms to group persists, epoch persistency fails

to specify precise ordering constraints. Figure 1(e) shows the

desired order on persists A, B, and C—persist C can be issued

concurrent to persists A and B. The persist barrier precludes

persist C from being concurrent when it is issued in either of

the epochs as shown in Figure 1(f,g).

Handcrafted PM applications. Prior works [19, 50] char-

acterize expertly-crafted PM applications that use Intel’s

PMDK [29] libraries to ensure failure-atomic transactions.

WHISPER applications [19] build failure-atomic transactions

that may contain up to a few hundred epochs. Wang et al. [50]

studies open-source microbenchmarks based on PMDK li-

braries [29] that may also require >10 barriers per failure-

atomic transaction to ensure correct logging. Unfortunately,

these handcrafted libraries require barriers to order logs with

654

the PM updates for correct recovery and may not always

coalesce logging operations and PM updates within separate

epochs [19, 50]. As such, we require hardware primitives that

may specify precise ordering constraints on PM operations.

III. STRAND PERSISTENCY MODEL

We propose employing strand persistency model [16] to

minimally constrain persists. Pelley et al. [16] proposes strand

persistency model in principle, but does not specify the

ISA primitives, hardware implementation and software use-

cases. Strand persistency divides thread execution into strands.

Strands constitute sets of PM operations that lie on the same

logical thread. Ordering primitives enforce persist ordering

within strands, but persists are not individually ordered across

strands. We use the term “strand” to evoke the idea that

a strand is a part of a logical thread, but has independent

persist ordering. Strand persistency decouples the visibility

and persist order of PM operations. The consistency model

continues to order visibility of PM operations—PM operations

on separate strands follow visibility order enforced by system’s

consistency model.

Strand primitives. Strand persistency employs three prim-

itives to prescribe persist ordering: a persist barrier to enforce

persist ordering among operations on a strand, NewStrand
to initiate a new strand, and a JoinStrand to merge prior

strands initiated on the logical thread. PM accesses on a

thread separated by a persist barrier are ordered. Conversely,

NewStrand removes ordering constraints on subsequent PM

operations. NewStrand initiates a new strand—a strand be-

haves as a separate logical thread in a persist order. Persists

on different strands can be issued concurrently to PM. Note

that persist barriers, within a strand, continue to order persists

on that strand. The hardware must guarantee that recovery

software never observes a mis-ordering of two PM writes

on the same strand that are separated by a persist barrier.

Finally, JoinStrand merges strands that were initiated on the

logical thread. It ensures the persists issued on the prior strands

complete before any subsequent persists are issued.

In this work, we propose StrandWeaver to define ISA

extensions and build the strand persistency model in hardware.

Further, we provide techniques to map the persistency seman-

tics offered by high-level languages to strand persistency.

A. Definitions

The strand persistency model specifies the order in which

updates persist to PM. We formally define the persist order

enforced under strand persistency using notation similar to

prior works [17, 25].

• M i
x: A load or store operation to PM location x on thread

i
• Si

x: A store operation to PM location x on thread i
• PBi: A persist barrier issued by thread i
• NSi: A NewStrand issued by thread i
• JSi: A JoinStrand issued by thread i

Volatile memory order (VMO) defines the ordering relation

on memory operations prescribed by the system’s consistency

model. Similarly, persist memory order (PMO) defines the

ordering relation that describes the ordering of memory op-

erations by the system’s persistency model.

• M i
x ≤v M i

y: M i
x is ordered before M i

y in VMO

• M i
x ≤p M i

y: M i
x is ordered before M i

y in PMO

We now define the ordering constraints that are expressed

by the primitives under strand persistency.

Intra-strand ordering. NewStrand operation initiates a

new strand; subsequent memory operations will not have

any ordering constraints in PMO to operations preceding the

NewStrand. A persist barrier orders PM operations within a

strand. Thus, two memory operations that are not separated

by a NewStrand are ordered in PMO by a persist barrier.

(
M i

x≤vPBi≤vM
i
y

) ∧ (
�NSi : M i

x≤vNSi≤vM
i
y

)

→ M i
x ≤p M i

y
(1)

Additionally, JoinStrand introduces ordering constraints

on PM operations to different memory locations that lie on

separate strands. Note that a persist barrier does not order per-

sists on different strands. JoinStrand orders persists initiated

on prior strands with the persists on subsequent strands.

M i
x≤vJS

i≤vM
i
y → M i

x ≤p M i
y (2)

Thus, memory operations separated by JoinStrand are

ordered in PMO.

Strong persist atomicity. Persists to the same or overlap-

ping memory locations follow the order in which memory

operations are visible (as governed by the consistency model

of the system)—this property is called strong persist atom-
icity [16]. Similar to consistency models that ensure store
atomicity by serializing memory operations to the same mem-

ory location through coherence mechanisms, strong persist

atomicity serializes persists to the same memory location. We

preserve strong persist atomicity to ensure that recovery does

not observe side-effects due to reorderings that would not

occur under fault-free execution of the program.

Si
x ≤v Sj

x → Si
x ≤p Sj

x (3)

Conflicting persists on different strands or logical threads

that are ordered in VMO are also ordered in PMO.

Transitivity. Finally, persist order is transitive and irreflex-

ive:
(
M i

x ≤p M j
y

) ∧ (
M j

y ≤p Mk
z

) → M i
x ≤p Mk

z (4)

Persists on racing strands or threads (two or more strands

or threads that consist of racing memory accesses) can occur

in any order, unless ordered by Equations 2-4.

B. Persist Ordering

Figure 2 illustrates persist ordering under different scenarios

due to strand persistency primitives.

Intra-strand persist concurrency. Figure 2(a) shows ex-

ample code that employs NewStrand to issue persists concur-

rently on different strands, and a persist barrier to order persists

655

P(A) = 1
PB

P(B) = 1
NS

P(C) = 1

(a) (b)

P(A) = 1
NS

P(B) = 1
JS

P(C) = 1

(c) (d)

P(A) = 1
NS

P(A) = 2
PB

P(B) = 1

(e) (f)

P(A) = 1
NS

x = Ld(A)
P(B) = x

(g)

P(A) = 1

Strand 0 Strand 1

x=Ld(A)

P(B) = x

(h)

P(A) = 1

P(B) = 1

P(C) = 1
Strand 0 Strand 1

Forbidden: A = 0, B =1

P(A) = 1
P(A) = 2

Strand 0 Strand 1

P(B) = 1

Forbidden: A = 0/1, B =1

Init state
in all

examples

A = 0
B = 0
C = 0

P(A) = 1
NS

P(B) = 1 P(B) = 2
PB

P(C) = 1

Thread 0 Thread 1

(i) (j)

No state forbidden

P(B) = 1

Strand 0

Thread 0 Thread 1

P(B) = 2

Strand 0

P(C) = 1

Forbidden:
B = 1, C = 1
B = 0, C = 1

Strand 1

P(A) = 1

P(A) = 1 P(B) = 1
Strand 0 Strand 1

P(C) = 1

Forbidden:
A=0, B=0/1, C=1
A=1, B=0, C=1

Fig. 2: Persist order due to StrandWeaver’s primitives. Figure uses following
notations for strand primitives: PB: persist barrier, NS: NewStrand and JS:
JoinStrand. In each case, we also show the forbidden PM state. Black solid
arrow, blue solid arrow, and black dotted arrow show order due to persist
barrier, JoinStrand, and SPA, respectively. (a,b) Intra-strand ordering due
to persist barrier, (c,d) Inter-strand ordering due to JoinStrand, (e,f) Persist
order due to SPA, (g,h) Loads to the same PM location do not order persists,
(i,j) Inter-thread persist ordering due to SPA.

within a strand. Persist barrier PB orders persist A before persist

B (Equation 1) on strand 0 as shown in Figure 2(b). The

NewStrand operation clears ordering constraints on following

persists due to the previous persist barrier PB (Equation 1)

and initiates a new strand 1. Persist barrier PB does not order

persists that lie on different strands. Persist C lies on strand 1,

and can be issued to PM concurrent to persists A and B.

Inter-strand persist ordering. Figure 2(c) shows example

code that employs JoinStrand to order persists. JoinStrand

merges strands 0 and 1 to ensure that persists A and B are

ordered in PMO before persist C (as per Equation 2) as shown

in Figure 2(c,d). Figure 2(d) shows forbidden PM state that

requires persist C to reorder before persists A and B and so, is

disallowed under strand persistency.

Inter-strand strong persist atomicity. Strong persist atom-

icity (SPA) governs the order of persists on different strands or

threads to the same or overlapping memory locations (as per

Equation 3). SPA orders persists as per their visibility enforced

due to program order or cache coherence. Figure 2(e) shows an

example of conflicting persists that occur on separate strands

within a thread. Persist A on strand 0 is ordered before persist

A on strand 1 as corresponding stores to the memory location A

follow their program order [51]. Note that, persist B on strand

1 is ordered after persist A on strand 0 due to transitivity (as per

Equation 4)—this relationship guarantees that recovery never

observes the PM state shown in Figure 2(f).

Note that, a conflicting load to PM on another strand does

not establish persist order in PMO (as per Equations 1 and

3). As shown in Figure 2(g), although load A is program-

ordered after persist to A, persist B on strand 1 can be

issued concurrently to PM. Although visibility of the memory

operations is ordered, persists can be issued concurrently on

the two strands—PM state (A=0, B=1) is not forbidden. Persist

order due to SPA on separate strands can be established

by having write-semantics for both memory operations to

the same location (e.g. read-modify-write instead of loads).

Alternatively, persist order across strands can be achieved

using JoinStrand as shown in Figure 2(c,d).

Inter-thread strong persist atomicity. Similar to inter-

strand order, SPA orders persists that occur on different logical

threads. Figure 2(i) shows an example execution on two

threads. On thread 0, persists A and B lie on different strands

and are concurrent, as shown in Figure 2(j). If a store to

memory location B on thread 0 is ordered before that on

thread 1, order that is established through cache coherence,

they are ordered in PMO. SPA orders persist B (and following

persist C due to intervening persist barrier) on thread 1 after

persist B on thread 0. Conversely, if store B on thread 1 is

ordered before store B on thread 0 in VMO (case not shown

in Figure 2(j)), the forbidden state changes to (B=0, C=1).

Establishing inter-thread persist order. Persists on dif-

ferent strands or threads may occur in any order, unless or-

dered by Equations 2-4. Synchronization operations establish

happens-before ordering relation between threads [52, 53],

ordering visibility of memory operations, but do not enforce

persist order. Persists can potentially reorder across the syn-

chronizing lock and unlock operations. This reordering can be

suppressed by placing a JoinStrand operation before unlock

and after synchronizing lock operations. Synchronizing lock

and unlock operations establish a happens-before ordering

relation between threads, and JoinStrand operations prevent

any persists from reordering across synchronizing operations.

Note that locks may be persistent or volatile. If locks reside

in PM, persists resulting from lock and unlock operations are

ordered in PM due to SPA. Thus, recovery may observe correct

lock state and reset it after failure [54].

IV. HARDWARE IMPLEMENTATION

We now describe hardware mechanisms that guarantee these

persist orderings.

Microarchitecure. We implement StrandWeaver’s persist

barrier, NewStrand, and JoinStrand primitives as ISA ex-

tensions. A persist occurs due to a voluntary data flush from

volatile caches to PM using a CLWB operation, or a writeback

resulting from cacheline replacement. We use CLWB, which is

issued to write-back caches by the CPU, to flush dirty cache

lines to the PM controller. Note that CLWB is a non-invalidating

operation—it retains a clean copy of data in caches. A CLWB

completes when the CPU receives an acknowledgement of its

receipt from the PM controller.

656

Strand Buffer Unit

LQ

Persist Queue

Mem Op.

CLWB

Addr

clwb addr

Can
Issue
0/1

Has
Issued

0/1

Cmpl.

0/1
NewStrand X 0/1 0/1 0/1
JoinStrand X X X 0/1

PersistBarrier X 0/1 0/1 0/1

SQ PQ

L1
Cache

WB

SB0 SBn
…

Mem Op.

CLWB

Addr

clwb addr

Can
Issue
0/1

Has
Issued

0/1

Cmpl.

0/1
PersistBarrier 0/1

Ongoing
buffer idx Strand Buffer

Coherence
Requests

WB
Req

SB0
Idx …

SBn
Idx

Write-back buffer

CLWB
PersistBarrier
NewStrand

X

CLWB req CLWB resp

Snoop
Req

SB0
Idx …

SBn
Idx

Snoop buffer

X X

Fig. 3: StrandWeaver architecture. Persist queue and strand buffer unit
implement persist ordering due to primitives in strand persistency model.

Architecture overview. Figure 3 shows the high-level

architecture of StrandWeaver. The persist queue and strand

buffer unit jointly enforce persist ordering. The persist queue,

implemented alongside the load-store queue (LSQ), ensures

that CLWBs and stores separated by a persist barrier within

a strand are issued to the L1 cache in order, and CLWBs

separated by JoinStrand complete in order. The strand buffer

unit is primarily responsible for leveraging inter-strand persist

concurrency to schedule CLWBs to PM. It resides adjacent to

the L1 cache and comprises an array of strand buffers that may

issue CLWBs from different strands concurrently. Each strand

buffer manages persist order within a strand and guarantees

that persists separated by persist barriers within that strand

complete in order. The strand buffer unit also coordinates with

the L1 cache to ensure that persists due to cache writebacks are

ordered as per PMO. It also tracks cache coherence messages

to ensure that inter-thread persist dependencies are preserved.

Persist queue architecture. Figure 3 shows the persist

queue architecture and operations appended to it by the

CPU pipeline. The persist queue manages entries that record

ongoing CLWBs, persist barriers, NewStrand, and JoinStrand

operations. Its architecture resembles that of a store queue—

it supports associative lookup by address to identify depen-

dencies between ongoing stores and CLWBs. Figure 3 also

shows Addr, CanIssue, HasIssued, and Completed fields

per entry in the persist queue. The Addr field records the

memory address for an incoming CLWB operation that needs

to be flushed from caches to the PM. The CanIssue field

is set when an operation’s persist dependencies resolve and

the operation is ready to be issued to the strand buffer unit.

CLWBs, persist barriers, and NewStrand are issued to the strand

buffer unit when CanIssue is set; HasIssued is set as they

are issued. The Completed field is set when the persist queue

receives a completion acknowledgement for the operation. An

operation can retire from the queue when Completed is set.

Persist queue operation. The persist queue tracks persist

barriers to monitor intra-strand persist dependencies. On in-

sertion, a persist barrier imposes a dependency so that CLWBs

and stores are ordered within its strand. It orders issue of

prior stores before subsequent CLWBs, and prior CLWBs before

subsequent stores. These constraints ensure that stores do not

violate persist order by updating the cache and draining to PM

via a cache writeback before preceding CLWBs. The persist

queue also coordinates with the store queue to ensure that

younger CLWBs are issued to the strand buffer unit only after

elder store operations to the same memory location. On CLWB

insertion, the persist queue performs a lookup in the store

queue to identify elder stores to the same location. This lookup

is similar to that performed by the load queue for load-to-store

forwarding [55, 56].

CLWBs, persist barriers, and NewStrand operations in the

persist queue are issued to the strand buffer unit in order.

Note that, unlike Intel’s persistency model, which stalls stores

separated by SFENCE until prior CLWBs complete (as described

in Section II-B), persist barriers stall subsequent stores only

until prior CLWBs have issued. JoinStrand ensures that CLWBs

and stores issued on prior strands complete before any sub-

sequent CLWBs and stores can be issued. Unlike a persist

barrier, JoinStrand stalls issue of subsequent CLWBs and

stores until prior CLWBs and stores complete. On JoinStrand

insertion, the persist queue coordinates with the store queue to

ensure that subsequent stores are not issued until prior CLWBs

complete. As JoinStrand is not issued to the strand buffer

unit, its CanIssue and HasIssued fields are not used.

CLWBs, persist barriers, and NewStrand operations complete

when the persist queue receives a completion acknowledge-

ment from the strand buffer unit. JoinStrand completes when

prior CLWBs, persist barrier, and NewStrand are complete and

removed from the persist queue, and prior stores are complete

and removed from the store queue.

Strand buffer unit architecture. The strand buffer unit

coordinates with the L1 cache to guarantee CLWBs and cache

writebacks drain to PM and complete in the order specified

by PMO. It maintains an array of strand buffers—each strand

buffer manages persist ordering within one strand. CLWBs that

lie in different strand buffers can be issued concurrently to PM.

Strand buffers manage ongoing CLWBs and persist barriers and

record their state in fields similar to the persist queue. The

CanIssue and HasIssued fields mark when a CLWB is ready

to issue and has issued to PM, respectively. The strand buffer

retires entries in order when operations complete.

Strand buffer unit operation. The strand buffer unit

receives CLWB, persist barriers, and NewStrand operations

from the persist queue. In the strand buffer unit, the ongoing

buffer index points to the strand buffer to which an incoming

CLWB or persist barrier is appended. This index is updated

when the strand buffer unit receives a NewStrand operation

indicating the beginning of a new strand. Subsequent CLWBs

and persist barriers are then assigned to the next strand

buffer. StrandWeaver assigns strand buffers upon NewStrand

operations in a round-robin fashion. The strand buffer unit

657

acknowledges completion of NewStrand operations to the

persist queue when it updates the current buffer index.

Each strand buffer manages intra-strand persist order arising

from persist barriers. It orders completion of prior CLWBs be-

fore any subsequent CLWBs can be issued to PM. On insertion

in a strand buffer, a persist barrier creates a dependency that

orders any subsequent CLWBs appended to the buffer. A persist

barrier completes when CLWBs ahead of it complete and retire

from the strand buffer. On completion of a persist barrier, the

strand buffer resolves dependencies for subsequent CLWBs and

marks them ready to issue by setting CanIssue. When CLWBs

are inserted, the strand buffer performs a lookup to identify

any persist dependencies from incomplete persist barriers. If

there are none, the strand buffer immediately sets CanIssue.

When its dependencies resolve (when CanIssue field is

set), the strand buffer issues a CLWB—it performs an L1 cache

lookup to determine if the cache line is dirty. If so, it flushes

the dirty cache block to PM and retains a clean copy in the

cache. Upon a miss, it issues the CLWB to lower-level caches.

When the CLWB is performed, HasIssued is set.

The strand buffer receives an acknowledgement when a

CLWB completes its flush operation. It marks the corresponding

entry Completed and retires completed entries in order.

Managing cache writebacks. PM writes can also happen

due to cache line writebacks from write-back caches. The

persist queue does not stall visibility of stores following

persist barriers until prior CLWBs complete—it only ensures

that prior CLWBs are issued to the strand buffer unit before any

subsequent stores are issued. Thus, stores might inadvertently

drain from the cache before ongoing CLWBs in the strand buffer

unit complete. StrandWeaver extends the write-back buffer,

which manages in-progress writebacks from the L1 cache,

with a field per strand buffer (as shown in Figure 3) that

records the tail index of the buffer when the L1 cache initiates

a writeback. The write-back buffer drains writebacks only

after the strand buffers drain operations beyond these recorded

indexes. This constraint guarantees that older CLWBs complete

before subsequent writebacks are issued, and thus prevents any

persist order violation. Note that, since CLWBs never stall in

strand buffers to wait for writebacks, there is no possibility of

circular dependency and deadlock in StrandWeaver.

Enabling inter-thread persist order. As explained earlier

in Section III, strong persist atomicity establishes order on per-

sists to the same memory location across different threads—

persists follow the order in which stores become visible. As

cache coherence determines the order in which stores become

visible, we track incoming coherence requests to the L1 cache

to establish persist order. If a cache line is dirty in the

L1 cache, other cores might steal ownership and persist the

cache line before ongoing CLWBs in the strand buffer complete

(violating the required order shown in Figure 2(i,j)). Similar to

the write-back buffer, we provision per-strand-buffer fields in

the snoop buffers that track and respond to ongoing coherence

requests. On an incoming read-exclusive coherence request, if

the corresponding cache line is dirty, we record the tail index

of the strand buffer in the snoop buffer. The read-exclusive

A
PB

B
NS

C
JS

D

A
PB

C

B

Persist
Queue

Strand
Buffer 0

Strand
Buffer 1

Ongoing
buffer idx

Example Code

CLWB(A)
Persist Barrier

CLWB(B)

NewStrand
CLWB(C)

JoinStrand

CLWB(D)

1

2

3

4

5 6

7

8

9

HasIssued = 1CanIssue = 1CanIssue = 0 Compl. = 1

Fig. 4: Running example. Figure uses following notations. PB: persist
barrier, NS: NewStrand, JS: JoinStrand.

request stalls until the strand buffers drain to the recorded

index. This stall ensures that CLWBs that are in progress when

the coherence request was received complete before the read-

exclusive reply is sent. Again, there is no possibility of circular

dependency/deadlock.

PM controller. We do not modify the PM controller; we

assume it supports ADR [46, 57] and so lies in the persistent

domain. When the PM controller receives a CLWB, it returns

an acknowledgement to the strand buffer unit.

A. Example

Figure 4 shows an example code with the desired order on

persists prescribed by PMO. We show a step-by-step illus-

tration of operations as they are executed by StrandWeaver.

1 CLWB(A) is appended to an entry in the persist queue,

and is issued to the strand buffer unit, as it encounters no

earlier persist dependencies. Since the current buffer index is

0, CLWB(A) is added to strand buffer 0. 2 CLWB(A) is issued

and performs an L1 access to flush the dirty cache line. 3

A persist barrier and CLWB(B) are appended to strand buffer

0; CLWB(B) stalls and waits for the preceding persist barrier

(and CLWB(A)) to complete. 4 NewStrand from the persist

queue updates the ongoing buffer index in the strand buffer

unit to 1. Consequently, subsequent CLWB(C) is appended to

strand buffer 1. 5 As CLWB(C) incurs no prior dependencies

in its strand buffer 1 due to persist barriers, it issues to PM

concurrent to CLWB(A). 6 The strand buffer unit receives a

completion for CLWB(A); the operation is complete. 7 As

CLWB(A) and the persist barrier complete, the ordering depen-

dency of CLWB(B) is resolved, and it issues. 8 JoinStrand

stalls issue of CLWB(D) until prior CLWBs complete. 9 When

the persist queue receives a completion acknowledgement for

CLWB(A), CLWB(B), and CLWB(C), JoinStrand completes

and CLWB(D) is issued to the strand buffer unit.

V. DESIGNING LANGUAGE-LEVEL PERSISTENCY MODELS

The strand persistency model decouples persist order from

the visibility order of memory operations—it provides oppor-

tunity to relax persist ordering even in the presence of con-

servative consistency models (e.g. TSO [39]). Unfortunately,

658

FA-Begin()

log_begin()
JoinStrand

FA-End()

JoinStrand
log_end()

Store(A,val)

log_store(LA,A)

CLWB(LA)

Persist Barrier
store(A,val)
NewStrand

Fig. 5: Logging using strand primitives. Figure shows instrumentation for
failure-atomic region begin and end, and PM store operation.

programmers must reason about memory ordering at the ISA

abstraction, making it error-prone and burdensome to write

recoverable PM programs. Recent efforts [11, 12, 29, 13, 27,

26, 13, 30, 31] extend persistency semantics and provide ISA-

agnostic programming frameworks in high-level languages,

such as C++ and Java. These proposals use existing synchro-

nization primitives in high-level languages to also prescribe

order on persists and enforce failure atomicity for groups

of persists. Failure atomicity reduces the state space visible

to recovery and greatly simplifies persistent programming by

ensuring either all or none of the updates within a region are

visible in case of failure.

Some models [29, 27, 26] enable failure-atomic transactions

for transaction-based programs and rely on external synchro-

nization [54, 26] to provide transaction isolation. ATLAS [11]

and SFR-based [12, 30, 15] persistency models look beyond

transaction-based programs to provide failure atomicity using

languages’ low-level synchronization primitives. ATLAS em-

ploys undo logging to provide failure atomicity for outermost

critical sections—code region bounded by lock and unlock

synchronization operations. In contrast, SFR-based persistency

models [12, 30, 15] enable failure-atomic synchronization-

free regions—code regions bounded by low-level synchro-

nization primitives, such as acquire and release. The mod-

els enable undo logging as a part of language semantics—

compiler implementations emit logging for persistent stores

in the program, transparent to the programmer. We propose

logging based on strand persistency primitives. We integrate

our logging mechanisms into compiler passes to implement

language-level persistency model semantics.

Logging implementation. Undo logging ensures failure

atomicity by recording the old value of data before it is

updated in a failure-atomic region. Undo logs are committed

when updates persist in PM. On failure, a recovery process

uses uncommitted undo logs to roll back partial PM updates.

For correct recovery, undo logs need to persist before in-

place updates (as shown earlier in Figure 1(b)). A pairwise

persist ordering between an undo log and corresponding in-

place update ensures correct recovery. Within a failure-atomic

region, undo logs for different updates need not be ordered—

logging operations can persist concurrently (as shown under

the ideal ordering constraints in Figure 1(d)). Similarly, in-

place updates may persist concurrently, too, provided they do

not overlap.

Figure 5 shows our logging mechanism, which employs

StrandWeaver’s ISA primitives to enable failure-atomic up-

dates. We persist undo logs and in-place updates using CLWB

0 1 2 3 4 5 6 7
H T

CM

0 1 2 3 4 5 6 7
H T

CM

0 1 2 3 4 5 6 7
H

CM

Invalidate committed logs

0 1 2 3 4 5 6 7
H

CM

Roll back uncommited logs
(a)

1

3

4

3
(b)

2 2

1Failure

Fig. 6: Logging example. Entries for store operations are shown in blue
and entries for synchronization operations are shown in red. CM refers to the
commit marker in the log entry. (a) Running example of log entry allocation
and commit. (b) Running example of recovery process on failure.

and order these persists using a persist barrier. The persist

barrier ensures that the log is created and flushed to PM

before the update. Each logging operation and update is

performed on a separate strand; we issue NewStrand after

each log-update sequence, enabling persist concurrency across

the independent updates. We ensure that all persists within a

failure-atomic region complete before exiting the region by

enclosing it within JoinStrand operations—these ensure that

persists on different strands do not “leak” out of the failure-

atomic region. The precise implementation of log begin()

and log end() vary based on the semantics prescribed by

various language-level persistency models.

Integrating with language persistency models. Under

ATLAS, we initiate and terminate failure-atomic regions at

the lock and unlock operations of outermost critical sections.

log begin() creates a log entry for the lock operation. The

log entry captures happens-after ordering relations on the lock

due to prior unlock operations on the same lock, similar to

the mechanism employed by ATLAS [11]. log end() for

an unlock operation updates metadata (similar to [11]) to

record happens-before ordering information required by the

subsequent lock operation on that lock. log store() creates

an undo log entry that records the address and prior value of an

update. Under SFR-based persistency, we emit log begin()

and log end() at the acquire and release synchronization

operations bracketing each SFR. As in prior work [12],

log begin() and log end() log happens-before ordering

relations in their log entries to ensure correct recovery. Under

failure-atomic transactions [29, 26], log end() flushes all

PM mutations in the transaction and ensures that they persist

before committing the logs.

Log structure. We initialize and manage a per-thread circu-

lar log buffer in PM as an array of 64-byte cache-line-aligned

log entries. Additional log entries are allocated dynamically if

the log space is exhausted.

Our log entry structure is similar to prior work [12, 11]:

• Type: Entry type [Store, Acquire, Release] in ATLAS

or SFR, [Store, TX BEGIN, TX END] for transactions

• Addr: Address of the update

• Value: Old value of an update in a store log entry, or

the metadata for happens-before relations for a sync.

operation

• Size: Size of the access

659

Core

8-cores, 2GHz OoO
6-wide Dispatch, 8-wide Commit
224-entry ROB
72/64-entry Load/Store Queue

I-Cache
32kB, 2-way, 64B
1ns cycle hit latency, 2 MSHRs

D-Cache
32kB, 2-way, 64B
2ns hit latency, 6 MSHRs

L2-Cache
28MB, 16-way, 64B
16ns hit latency, 16 MSHRs

DRAM, PM 64/32-entry write/read queue,
controller 1kB row buffer

PM
Modeled as per [58], 346ns read latency,
96ns write latency to controller
500ns write latency to PM

TABLE I: Simulator Specifications.

• Valid: Valid bit for the entry

• Commit marker: Commit intent marker for log commit

Our logging implementation maintains head and tail point-

ers to record the bounds of potentially valid log entries in the

log buffer. Figure 6(a) (step 1) shows the head and tail point-

ers and the valid log entries that belong to synchronization

operations (marked red) and store operations (marked blue).

The tail pointer indicates the location to which the next log

entry will be appended—we advance the tail pointer upon

creation of each log entry. We maintain the tail pointer in

volatile memory so that log entries created on different strands

are not ordered by updates to the tail pointer (as a consequence

of strong persist atomicity, see Equation 3).

The head pointer marks the beginning of potentially uncom-

mitted log entries. In Figure 6(a), suppose log entry 4 marks

the end of a failure-atomic region. Before commit begins, we

set the commit marker of the log entry that terminates the

failure-atomic region as shown in step 2 in Figure 6(a)—this

marks that the log commit has initiated. We mark undo-log

entries corresponding to a failure-atomic region invalid (step

3 in Figure 6(a)), and update and flush the head pointer to

commit those log entries (step 4 in Figure 6(a)).

On failure, the tail pointer in volatile memory is lost,

and the persistent head pointer is used to initiate recovery.

First, the recovery process identifies the log entries that were

committed, but not invalidated prior to failure; this scenario

occurs if failure happens during an ongoing commit operation.

Figure 6(b) shows an example with the commit marker for log

entry 4 set, log entries 1,2 invalidated, and log entries 3,4 yet

to be invalidated (step 1). The recovery process invalidates

the log entries from the head pointer to the log entry 4 with the

commit marker set, and advances the head pointer, as shown

in Figure 6(b) (step 2). Then, the recovery process scans the

log buffer starting from the head pointer and rolls back values

recorded in valid log entries in reverse order of their creation,

as shown in Figure 6(b) (step 3).

VI. EVALUATION

We next describe our evaluation of StrandWeaver.

A. Methodology

We implement StrandWeaver in the gem5 simulator [59],

configured as per Table I. We model a PM device as per the

Benchmarks Description CKC
Queue Insert/delete to queue [16, 18] 0.78
Hashmap Read/update to hashmap [26, 17] 4.83
Array Swap Swap of array elements [26, 17] 4.45
RB-Tree Insert/delete to RB-Tree [26, 18] 3.46
TPCC New Order trans. from TPCC [61, 17] 1.58
N-Store (rd-heavy) 90% read/10% write KV workload [60] 4.41
N-Store (balanced) 50% read/50% write KV workload [60] 8.06
N-Store (wr-heavy) 10% read/90% write KV workload [60] 10.05

TABLE II: Benchmarks. CLWBs per 1000 cycles (CKC) mea-

sures benchmark write intensity in the non-atomic design.

recent characterization studies of Intel’s Optane memory [58],

as shown in Table I. We configure our design with 16-entry

persist queue and four 4-entry strand buffers. StrandWeaver

requires a total of 144B of additional storage each in the persist

queue and strand buffer unit per core. It also extends the write-

back buffer and snoop buffer, 8 bits per entry each, to record

a 2-bit tail index for four strand buffers. We consider other

StrandWeaver configurations in Section VI-C.

Benchmarks. Table II describes the microbenchmarks and

benchmarks we study, and reports CLWBs issued per thousand

CPU cycles (CKC) as a measure of their write-intensity. Queue

performs insert and delete operations to a persistent queue.

Hashmap performs updates to a persistent hash, array-swap

swaps two elements in an array, RB-tree performs inserts and

deletes to a persistent red-black tree, and TPCC performs new

order transactions, which model an order processing system.

Additionally, we study N-Store [60], a persistent key-value

store benchmark, using workloads with different read-write

ratios, as listed in Table II. We use the YCSB engine with

N-Store to generate load, and modify its undo-log engine to

integrate our logging mechanisms. The microbenchmarks and

benchmark each run eight threads and perform 50K operations

on persistent data structures. As shown in Table II, N-Store

under a write-heavy workload is the most write-intensive

benchmark and queue and TPCC are the least write-intensive

microbenchmarks in our evaluation.

Language-level persistency models. As explained in

Section V, we design language-level implementations that

map persistency semantics in high-level languages to

StrandWeaver’s ISA primitives. We implement failure-atomic

transactions (TXNs), outermost critical sections (ATLAS), and

SFRs to evaluate StrandWeaver for each of the benchmarks.

We compare following designs in our evaluation:

Intel x86. This design implements language-level persis-

tency models using Intel’s existing ISA primitives, which

divide program regions into epochs using SFENCE, and allow

persist reordering only within the epochs, as discussed earlier

in Section II-B. Under Intel’s persistency model, SFENCE

orders durability of persists—it ensures that the earlier CLWBs

drain to the PM before any subsequent CLWBs are issued. In

this design, logs and in-place updates are ordered by SFENCE.

HOPS. This design implements HOPS [19], a state-of-the-

art hardware mechanism that builds a delegated epoch persis-

tency model. HOPS implements an ofence barrier that divides

program execution into epochs and ensures that they are or-

dered to PM. Unlike Intel x86 SFENCE operation, a lightweight

660

Fig. 7: Speedup of StrandWeaver, HOPS, and Non-atomic design normalized to the implementation based on Intel’s persistency model.

Fig. 8: CPU stalls as hardware enforces persist order. Stalls due to barriers create back pressure in CPU pipeline, and blocks program execution.

ofence barrier does not enforce durability of earlier persists.

It delegates the persist ordering due to ofence to the persist

buffers (similar to the strand buffers in StrandWeaver). The

dfence barrier ensures durability of prior epochs — it persists

updates issued in earlier epochs to the PM by flushing the

persist buffers to the point of persistence. HOPS employs

ofence to order the logs before the corresponding updates,

and dfence to flush the updates to PM before committing the

undo logs at the end of each failure-atomic region.

NO-PERSIST-QUEUE. This is StrandWeaver’s intermedi-

ate hardware design that implements the strand persistency

model, but without the addition of a persist queue. Incoming

CLWBs, persist barriers, NewStrand and JoinStrand are in-

serted in the existing store queue. The store queue manages

the order in which CLWBs, NewStrand, and persist barriers

issue to the strand buffer unit. We use this design to study the

concurrency enabled by the strand buffer unit.

StrandWeaver. This design implements our proposal, as

detailed in Sections IV-V.

NON-ATOMIC. In this design, we do not order log persists

with in-place updates—we remove the SFENCE between the

log entry creation and in-place update. Absent any ordering

constraints, this design shows the best-case performance that

StrandWeaver can obtain due to relaxed persist ordering. Note

that, since logs are not ordered before in-place updates, this

design does not assure correct failure recovery.

B. Performance Comparison

Figure 7 shows the performance comparison for our mi-

crobenchmarks and benchmarks, implemented under the three

language-level persistency models across the hardware de-

signs. Figure 8 shows CPU pipeline stalls as hardware enforces

persist ordering constraints—frequent stalls due to barriers fill

hardware queues and block program execution.

StrandWeaver outperforms Intel x86. StrandWeaver out-

performs the baseline Intel x86 design in all the benchmarks

we study, as it relaxes persist order relative to Intel’s existing

ordering primitives. Intel x86 orders log operations and in-

place updates using SFENCE, enforcing drastically stricter

ordering constraints than required for correct recovery. As

explained in Section II-B, SFENCE divides program execution

into epochs and CLWBs are allowed to reorder/coalesce only

within the epochs. Unfortunately, the persist concurrency

within epochs is limited by their small size [18]. In contrast,

StrandWeaver enforces only pairwise ordering between the

undo log and in-place update. As a result, StrandWeaver

outperforms the Intel baseline by 1.45× on average.

Note that we achieve speedup over this design even though

the memory controller lies in the persistent domain and hides

the write latency of the PM device. Under the Intel x86

persistency model, SFENCEs stall issue for subsequent updates

until prior CLWBs complete. The additional constraints due to

SFENCE fill up the store queue, creating back pressure and

stalling the CPU pipeline. StrandWeaver encounters 62.4%

fewer pipeline stalls, resulting in a performance gain of 1.45×
on average over Intel x86. Table II shows that N-Store, under a

write-heavy workload, is the most write-intensive benchmark

that we evaluate. As a result, StrandWeaver achieves the

highest speedup of 1.82× on average in N-Store.

StrandWeaver outperforms HOPS. StrandWeaver

achieves a speedup of 1.20× on average compared to HOPS,

a state-of-the-art implementation of the epoch persistency

model. HOPS implements a lightweight ofence barrier

that orders undo logs before the corresponding updates

within a failure-atomic region. Unfortunately, the ofence

barrier also orders the subsequent logs and PM updates,

which may be issued concurrently to PM. On the contrary,

StrandWeaver performs each logging operation and update on

a separate strand. Thus, StrandWeaver achieves greater persist

concurrency and a speedup of up to 1.55× over HOPS.

Persist concurrency due to strand buffers. The strand

buffers issue CLWBs that lie on different strands concurrently.

As shown in Figure 7, StrandWeaver’s intermediate design,

without the persist queue, achieves 1.29× speedup over Intel

x86 design on average, with 52.3% fewer pipeline stalls.

Adding the persist queue prevents head-of-the-line blocking

661

Fig. 9: Sensitivity study with different StrandWeaver configurations denoted
as (Number of strand buffers, Number of entries per strand buffer).

due to long-latency CLWBs in the store queue—stores on dif-

ferent strands may enter the store queue and issue concurrent

to CLWBs. StrandWeaver attains an additional speedup of 1.13×
over the variant without the persist queue.

Performance comparable to non-atomic design. Figure 7

shows performance for the non-atomic design that removes

the pairwise ordering constraint between the updates and their

logs. We include this design to study the limit on performance

that StrandWeaver might achieve—this design does not ensure

correct recovery as updates can persist before their logs.

StrandWeaver incurs 3.1% slowdown in microbenchmarks and

5.7% slowdown in N-Store relative to this upper bound due

to additional persist ordering within each strand.

Low write-intensity benchmarks. StrandWeaver achieves

its lowest speedup of 5.32% on average in TPCC for the three

persistency model implementations. TPCC acquires multiple

locks per new order transaction to ensure isolation. As such,

there is high lock acquisition overhead per failure-atomic

region. As per Table II, Queue has the lowest write intensity,

but achieves a speedup of 1.64× on average. Queue has the

least concurrency among the benchmarks we study, as all its

threads contend on a single lock to serialize push and pop

operations to the queue. CLWBs fall on the critical execution

path and additional ordering constraints incur execution delay.

Sensitivity to language-level persistency model.
StrandWeaver’s implementation that ensures failure-atomic

transactions flushes in-place updates and commits logs

at the end of the failure-atomic region. In contrast, the

SFR implementation issues batched commits by logging

happens-before relations in logs at the end of each SFR and

continuing execution without stalling for log commits. ATLAS

issues batched log commits too, but employs heavier-weight

mechanisms to record happens-before order between the

lock and unlock operation, as compared to SFR [12]. Thus,

StrandWeaver achieves the highest speedup of 1.50× for SFR,

followed by 1.45× speedup for failure-atomic transactions,

and 1.40× speedup for ATLAS.

C. Sensitivity Study

Next, we evaluate StrandWeaver for different configurations.

Configuring strand buffer unit. Figure 9 shows the evalu-

ation of StrandWeaver with varying number of strand buffers

and entries per strand buffer. Due to space limitations, we show

only the results for the SFR implementation—the performance

trend for the other implementations is similar. With fewer than

four entries per buffer, the strand buffer unit fails to leverage

available persist concurrency on different strands, even when

we configure the unit with four buffers. As we increase

Fig. 10: Speedup with varying number of operations per SFR.

the number of buffer entries to four, even with two strand

buffers, StrandWeaver’s performance improves by 1.36×, as

persists on different strands can drain concurrently. Finally,

StrandWeaver’s performance improves by a further 7.7% with

four strand buffers and four buffer entries each. As we see

no further improvement with additional state (e.g. eight strand

buffers with eight buffer entries, in Figure 9), we configure

the strand buffer unit with four buffers, each with four entries.

Size of failure-atomic regions. The number of operations

per failure-atomic region determines the available persist con-

currency in StrandWeaver. In Figure 10, we vary number of

operations performed per failure-atomic SFR in our micro-

benchmarks. The number of concurrent strands reduces with

the number of operations per region. StrandWeaver achieves

1.10× speedup (avg.) over Intel x86 baseline with two op-

erations per SFR; the speedup increases with the number of

operations per region.

VII. RELATED WORK

PM adoption has been widely studied in hardware de-

sign [28, 16, 18, 17, 35, 19, 62, 38, 34, 63], file systems [28,

64, 65, 66, 5, 67, 68, 69], runtime systems [70, 71, 72, 73,

74, 60, 25, 43, 11, 75, 76, 15, 77, 78, 79, 80, 32, 81, 78],

persistent data structures [82, 83, 84, 85], and distributed

systems [86, 87, 88, 89].

Persistency models. Prior works propose memory persis-

tency models [10, 9, 16, 28] to define the order in which

updates persist to PM. Several works [18, 19, 17, 45] propose

hardware mechanisms to build strict and relaxed persistency

models defined by Pelley et al. [16]. DPO [17] builds a

buffered strict persistency model for hardware that provides

a relaxed consistency model. Unfortunately, DPO does not

provide mechanisms to enforce data durability (e.g. at the

end of a failure-atomic region), and is limited to hardware

that builds snoop-based coherence mechanisms with a single

PM controller. HOPS [19], BPFS [28], Shin et al. [45],

and Joshi et al. [18] implement epoch persistency models in

hardware by extending the cache hierarchy and PM controller

to track persist dependencies. As we demonstrate in Sec-

tion VI-B, StrandWeaver outperforms HOPS [19], an epoch

persistency model, by 1.20× on average.

Hardware logging. Several prior works propose mecha-

nisms to perform write-ahead logging in hardware to enable

efficient failure-atomic updates to PM. Doshi et al. [35] builds

redo logging in hardware by implementing a victim cache to

avoid out-of-order cache evictions. We primarily explore undo

logging because a wide class of language implementations

use it to ensure failure-atomic regions [12, 13, 11]. Other

662

logging mechanisms, such as redo logging, may also benefit

from the relaxed semantics under strand persistency. Redo

logging involves recording new updates in logs, followed by

performing the in-place updates. Under strand persistency,

each failure-atomic transaction may be performed on a sep-

arate strand. Within each strand, transactions can create redo

logs, issue a persist barrier and then perform in-place updates.

A group commit operation can merge strands and commit prior

transactions. We leave this analysis to future work.

ATOM [18], FIRM [90], Ogleari et al. [36], and

DHTM [37] build undo- or hybrid undo-redo logging mech-

anisms in hardware. These hardware mechanisms primarily

provide failure atomicity for transactions, but fail to extend

to other synchronization primitives or other logging imple-

mentations used by high-level language persistency mod-

els [11, 12, 13]. Proteus [38] introduces specialized log-load

and log-flush instructions to perform software-assisted logging

in hardware—it allows concurrency only for logging persists.

StrandWeaver’s primitives can be employed for a variety of

language implementations and logging mechanisms.

Software-based mechanisms. NV-Heaps [26] and

Mnemosyne [27] provide library interfaces to allow

programmers to build persistent memory data structures.

Similarly, SoftWrAP [91], REWIND [71], Pisces [92],

Wang et al. [93], Kamino-Tx [75], and DUDETM [43]

provide software libraries that enable failure-atomic

transactions. NVthreads [94] extends ATLAS [11] by

updating copy of data in critical section and merging it to

live copy at the end of a critical section. Similarly, JUSTDO

logging [95] extends ATLAS to guarantee program recovery to

the end of ongoing outermost critical section. Kolli et al. [25]

provides efficient implementation of failure-atomic software

transactions and proposes a deferred log commit mechanism

to delay commits until transactions conflict. Janus [96]

proposes software interface to efficiently implement storage

features such as encryption and deduplication. Alpaca [97]

and Coati [98] provide a task-based programming model

for intermittent systems, where updates in a task are failure

atomic. StrandWeaver’s primitives may be employed to enable

failure-atomic transactions.

Others. Scoped fence [99] restricts memory order due to

consistency model to a programmer-annotated scope. Sim-

ilarly, StrandWeaver restricts persist order due to a persist

barrier to a strand. Idetic [100] and Hibernus [101] detect

imminent power failures and flush volatile state to PM.

Survive [102], Kannan et al. [103], and ThyNVM [104]

propose coarse-grained checkpointing for PM systems. Oth-

ers [105, 106, 107, 108] leverage PM’s density to use it as a

scalable DRAM alternative. These proposals are orthogonal to

StrandWeaver.

VIII. CONCLUSION

In this work, we proposed StrandWeaver, a hardware strand

persistency model to minimally constrain orderings on PM

operations. We formally defined primitives under strand per-

sistency to specify intra-strand, inter-strand, and inter-thread

persist ordering constraints. We constructed hardware mecha-

nisms to implement strand persistency model that expose ISA

primitives to relax persist order. Furthermore, we implemented

logging mechanisms that map persistency semantics in high-

level languages to the low-level ISA primitives using our log-

ging mechanism. Finally, we demonstrated that StrandWeaver

can achieve 1.45× speedup on average as it can enable greater

persist concurrency than existing ISA-level mechanisms.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their

valuable feedback. We would also like to thank Akshitha Srira-

man for her insightful suggestions, and Shriya Sethuraman for

proof-reading our draft. This work was supported by ARM and

the National Science Foundation under the award NSF-CCF-

1525372. William Wang and Stephan Diestelhorst received

funding from the European Union’s Horizon 2020 research and

innovation programme under project Sage 2, grant agreement

800999.

REFERENCES

[1] “INTEL OPTANE DC PERSISTENT MEMORY,” https:
//www.intel.com/content/www/us/en/products/memory-storage/optane-
dc-persistent-memory.html.

[2] “Understand and deploy persistent memory,” https://docs.microsoft.
com/en-us/windows-server/storage/storage-spaces/deploy-pmem.

[3] “Available first on Google Cloud: Intel Optane DC Persistent Memory,”
https://tinyurl.com/gcp-release.

[4] M. Andrei, C. Lemke, G. Radestock, R. Schulze, C. Thiel, R. Blanco,
A. Meghlan, M. Sharique, S. Seifert, S. Vishnoi, and et al., “Sap hana
adoption of non-volatile memory,” Proc. VLDB Endow., vol. 10, no. 12,
p. 1754–1765, Aug. 2017.

[5] “Instruction prefetching using branch prediction information,” in Pro-
ceedings of the 1997 International Conference on Computer Design
(ICCD ’97), ser. ICCD ’97. USA: IEEE Computer Society, 1997, p.
593.

[6] J. Gray and A. Reuter, Transaction Processing: Concepts and Tech-
niques, 1st ed. San Francisco, CA, USA: Morgan Kaufmann Publish-
ers Inc., 1992.

[7] D. E. Lowell and P. M. Chen, “Free transactions with rio vista,”
SIGOPS Oper. Syst. Rev., vol. 31, no. 5, p. 92–101, Oct. 1997.

[8] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz, “Aries:
A transaction recovery method supporting fine-granularity locking and
partial rollbacks using write-ahead logging,” ACM Trans. Database
Syst., vol. 17, no. 1, pp. 94–162, Mar. 1992.

[9] Intel, “Intel architecture instruction set extensions programming refer-
ence (319433-022),” 2014, https://software.intel.com/sites/default/files/
managed/0d/53/319433-022.pdf.

[10] ARM, “Armv8-a architecture evolution,” 2016, https://tinyurl.com/arm-
nvm.

[11] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: Leveraging
locks for non-volatile memory consistency,” in Proc. OOPSLA. New
York, NY, USA: ACM, 2014, pp. 433–452.

[12] V. Gogte, S. Diestelhorst, W. Wang, S. Narayanasamy, P. M. Chen, and
T. F. Wenisch, “Persistency for synchronization-free regions,” in Proc.
PLDI. New York, NY, USA: ACM, 2018, pp. 46–61.

[13] A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “Language-level persistency,” in
Proc. ISCA. New York, NY, USA: ACM, 2017, pp. 481–493.

[14] A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “TARP: Translating acquire-
release persistency,” in NVMW, San Diego, CA, 2017. [Online].
Available: http://nvmw.eng.ucsd.edu/2017/assets/abstracts/1

[15] V. Gogte, S. Diestelhorst, W. Wang, S. Narayanasamy, P. M. Chen,
and T. F. Wenisch, “Failure-atomic synchronization-free regions,” in
NVMW, San Diego, CA, 2018. [Online]. Available: http://nvmw.ucsd.
edu/nvmw18-program/unzip/current/nvmw2018-final42.pdf

663

[16] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,”
SIGARCH Comput. Archit. News, vol. 42, no. 3, p. 265–276, Jun. 2014.

[17] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu, P. M.
Chen, and T. F. Wenisch, “Delegated persist ordering,” in Proc. MICRO.
IEEE Press, 2016.

[18] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Efficient persist
barriers for multicores,” in Proc. MICRO. New York, NY, USA:
ACM, 2015, pp. 660–671.

[19] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,
“An analysis of persistent memory use with whisper,” in Proc. ASPLOS.
New York, NY, USA: ACM, 2017, pp. 135–148.

[20] S. V. Adve and K. Gharachorloo, “Shared memory consistency models:
A tutorial,” Computer, vol. 29, no. 12, p. 66–76, Dec. 1996.

[21] H.-J. Boehm and S. V. Adve, “Foundations of the c++ concurrency
memory model,” in Proc. PLDI. New York, NY, USA: ACM, 2008,
pp. 68–78.

[22] K. Gharachorloo, A. Gupta, and J. Hennessy, “Two techniques to
enhance the performance of memory consistency models,” in Proc.
ICPC, 1991.

[23] L. Lamport, “How to make a multiprocessor computer that correctly
executes multiprocess programs,” IEEE Trans. Comput., vol. 28, no. 9,
p. 690–691, Sep. 1979.

[24] D. Lustig, C. Trippel, M. Pellauer, and M. Martonosi, “Armor: Defend-
ing against memory consistency model mismatches in heterogeneous
architectures,” in Proc. ISCA. New York, NY, USA: Association for
Computing Machinery, 2015, p. 388–400.

[25] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch, “High-
performance transactions for persistent memories,” in Proc. ASPLOS.
New York, NY, USA: ACM, 2016, pp. 399–411.

[26] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta,
R. Jhala, and S. Swanson, “Nv-heaps: Making persistent objects
fast and safe with next-generation, non-volatile memories,” in Proc.
ASPLOS. New York, NY, USA: ACM, 2011, pp. 105–118.

[27] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” in Proc. ASPLOS. New York, NY, USA: ACM,
2011, pp. 91–104.

[28] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better i/o through byte-addressable, persistent memory,”
in Proc. SOSP. New York, NY, USA: ACM, 2009, pp. 133–146.

[29] “pmem.io: Persistent memory programming,” https://pmem.io/pmdk/.
[30] A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, W. Wang, P. M. Chen,

S. Narayanasamy, and T. F. Wenisch, “Language support for memory
persistency,” IEEE Micro, vol. 39, no. 3, p. 94–102, May 2019.

[31] M. Wu, Z. Zhao, H. Li, H. Li, H. Chen, B. Zang, and H. Guan,
“Espresso: Brewing java for more non-volatility with non-volatile
memory,” in Proc. ASPLOS. New York, NY, USA: ACM, 2018, pp.
70–83.

[32] J. Izraelevitz, H. Mendes, and M. L. Scott, “Linearizability of persistent
memory objects under a full-system-crash failure model,” in Proc.
DISC. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 313–
327.

[33] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch,
“Persistency programming 101,” in NVMW, San Diego, CA, 2015.
[Online]. Available: http://nvmw.ucsd.edu/2015/assets/abstracts/33

[34] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra, “Atom: Atomic
durability in non-volatile memory through hardware logging,” in Proc.
HPCA, Feb 2017, pp. 361–372.

[35] K. Doshi, E. Giles, and P. Varman, “Atomic persistence for scm with
a non-intrusive backend controller,” in Proc. HPCA, March 2016, pp.
77–89.

[36] M. A. Ogleari, E. L. Miller, and J. Zhao, “Steal but no force: Efficient
hardware undo+redo logging for persistent memory systems,” in Proc.
HPCA, Feb 2018, pp. 336–349.

[37] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Dhtm: Durable
hardware transactional memory,” in Proc. ISCA. IEEE Press, 2018,
p. 452–465.

[38] S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, “Proteus: A
flexible and fast software supported hardware logging approach for
nvm,” in Proc. MICRO. New York, NY, USA: ACM, 2017, pp. 178–
190.

[39] S. Owens, S. Sarkar, and P. Sewell, “A better x86 memory model: X86-
tso,” in Proc. TPHOLs. Berlin, Heidelberg: Springer-Verlag, 2009, pp.
391–407.

[40] H.-J. Boehm and D. R. Chakrabarti, “Persistence programming models
for non-volatile memory,” in Proc. ISMM. New York, NY, USA: ACM,
2016, pp. 55–67.

[41] T. Shull, J. Huang, and J. Torrellas, “Autopersist: An easy-to-use java
nvm framework based on reachability,” in Proc. PLDI. New York,
NY, USA: ACM, 2019, pp. 316–332.

[42] “Use Persistent Memory with Go,” https://blogs.vmware.com/
opensource/2019/04/03/persistent-memory-with-go/.

[43] M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng, and J. Ren,
“Dudetm: Building durable transactions with decoupling for persistent
memory,” in Proc. ASPLOS. New York, NY, USA: ACM, 2017, pp.
329–343.

[44] K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm, “Implications of
cpu caching on byte-addressable non-volatile memory programming,”
Hewlett-Packard, Tech. Rep. HPL-2012-236, December 2012.

[45] S. Shin, J. Tuck, and Y. Solihin, “Hiding the long latency of persist
barriers using speculative execution,” in Proc. ISCA. New York, NY,
USA: ACM, 2017, pp. 175–186.

[46] Intel, “Deprecating the pcommit instruction,” 2016, https://software.
intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction.

[47] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and
W.-m. W. Hwu, “Dynamic memory disambiguation using the memory
conflict buffer,” in Proc. ASPLOS. New York, NY, USA: ACM, 1994,
pp. 183–193.

[48] R. Ghiya, D. Lavery, and D. Sehr, “On the importance of points-to
analysis and other memory disambiguation methods for c programs,”
in Proc. PLDI. New York, NY, USA: ACM, 2001, pp. 47–58.

[49] S. Sethumadhavan, R. Desikan, D. Burger, C. R. Moore, and S. W.
Keckler, “Scalable hardware memory disambiguation for high ilp
processors,” in Proc. MICRO. Washington, DC, USA: IEEE Computer
Society, 2003, pp. 399–.

[50] W. Wang and S. Diestelhorst, “Quantify the performance overheads of
pmdk,” in Proc. MEMSYS. New York, NY, USA: ACM, 2018, pp.
50–52.

[51] A. Arvind and J.-W. Maessen, “Memory model = instruction reordering
+ store atomicity,” in Proc. ISCA. USA: IEEE Computer Society, 2006,
p. 29–40.

[52] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, p. 558–565, Jul. 1978.

[53] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber, “Mathematizing
C++ concurrency,” in Proc. POPL. New York, NY, USA: ACM, 2011,
pp. 55–66.

[54] “C++ bindings for libpmemobj - synchronization primitives,” http://
pmem.io/2016/05/31/cpp-08.html.

[55] C. Blundell, M. M. Martin, and T. F. Wenisch, “Invisifence:
performance-transparent memory ordering in conventional multiproces-
sors,” in ACM SIGARCH Computer Architecture News, vol. 37, no. 3.
ACM, 2009, pp. 233–244.

[56] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, “Mechanisms
for store-wait-free multiprocessors,” SIGARCH Comput. Archit. News,
vol. 35, no. 2, p. 266–277, Jun. 2007.

[57] Intel, “Persistent memory programming,” 2015, http://pmem.io/.
[58] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J.

Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson, “Basic
performance measurements of the intel optane DC persistent memory
module,” CoRR, vol. abs/1903.05714, 2019. [Online]. Available:
http://arxiv.org/abs/1903.05714

[59] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, and et al., “The
gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, p.
1–7, Aug. 2011.

[60] J. Arulraj, A. Pavlo, and S. R. Dulloor, “Let’s talk about storage &
recovery methods for non-volatile memory database systems,” in Proc.
SIGMOD. New York, NY, USA: ACM, 2015, pp. 707–722.

[61] T. P. P. C. (TPC), “Tpc benchmark b,” 2010, http://www.tpc.org/tpc
documents current versions/pdf/tpc-c v5-11.pdf.

[62] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln: Closing
the performance gap between systems with and without persistence
support,” in Proc. MICRO. New York, NY, USA: ACM, 2013, pp.
421–432.

[63] D. Gope, A. Basu, S. Puthoor, and M. Meswani, “A case for scoped
persist barriers in gpus,” in Proc. GPGPU. New York, NY, USA:
ACM, 2018, pp. 2–12.

[64] X. Wu and A. L. N. Reddy, “Scmfs: A file system for storage class
memory,” in Prof. SC, ser. SC ’11. New York, NY, USA: Association
for Computing Machinery, 2011.

664

[65] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena, and
M. M. Swift, “Aerie: Flexible file-system interfaces to storage-class
memory,” in Proc. EuroSys. New York, NY, USA: ACM, 2014, pp.
14:1–14:14.

[66] J. Xu and S. Swanson, “Nova: A log-structured file system for hybrid
volatile/non-volatile main memories,” in Proc. FAST. USA: USENIX
Association, 2016, p. 323–338.

[67] J. Xu, L. Zhang, A. Memaripour, A. Gangadharaiah, A. Borase, T. B.
Da Silva, S. Swanson, and A. Rudoff, “Nova-fortis: A fault-tolerant
non-volatile main memory file system,” in Proc. SOSP. New York,
NY, USA: ACM, 2017, pp. 478–496.

[68] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, “System software for persistent memory,”
in Proc. EuroSys. New York, NY, USA: ACM, 2014, pp. 15:1–15:15.

[69] J. Xu, J. Kim, A. Memaripour, and S. Swanson, “Finding and fixing
performance pathologies in persistent memory software stacks,” in
Proc. ASPLOS. New York, NY, USA: ACM, 2019, pp. 427–439.

[70] T. Wang and R. Johnson, “Scalable logging through emerging non-
volatile memory,” Proc. VLDB Endow., vol. 7, no. 10, p. 865–876,
Jun. 2014.

[71] A. Chatzistergiou, M. Cintra, and S. D. Viglas, “REWIND: recovery
write-ahead system for in-memory non-volatile data-structures,” Proc.
VLDB Endow., vol. 8, no. 5, p. 497–508, Jan. 2015.

[72] I. Oukid, D. Booss, W. Lehner, P. Bumbulis, and T. Willhalm, “Sofort:
A hybrid scm-dram storage engine for fast data recovery,” in Proc.
DaMoN, 2014.

[73] H. Kimura, “Foedus: Oltp engine for a thousand cores and nvram,” in
Proc. SIGMOD. New York, NY, USA: Association for Computing
Machinery, 2015, p. 691–706.

[74] J. Arulraj, M. Perron, and A. Pavlo, “Write-behind logging,” Proc.
VLDB Endow., vol. 10, no. 4, p. 337–348, Nov. 2016.

[75] A. Memaripour, A. Badam, A. Phanishayee, Y. Zhou, R. Alagappan,
K. Strauss, and S. Swanson, “Atomic in-place updates for non-volatile
main memories with kamino-tx,” in Proc. EuroSys. New York, NY,
USA: ACM, 2017, pp. 499–512.

[76] J. Guerra, L. Marmol, D. Campello, C. Crespo, R. Rangaswami, and
J. Wei, “Software persistent memory,” in Proc. ATC. Boston, MA:
USENIX, 2012, pp. 319–331.

[77] T. M. Nguyen and D. Wentzlaff, “Picl: A software-transparent, persis-
tent cache log for nonvolatile main memory,” in Proc. MICRO. IEEE
Press, 2018, p. 507–519.

[78] V. Gogte, W. Wang, S. Diestelhorst, A. Kolli, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “Software wear management
for persistent memories,” in Proc. FAST. Boston, MA: USENIX
Association, Feb. 2019, pp. 45–63.

[79] I. Narayanan, A. Ganesan, A. Badam, S. Govindan, B. Sharma, and
A. Sivasubramaniam, “Getting more performance with polymorphism
from emerging memory technologies,” in Proc. SYSTOR. New York,
NY, USA: ACM, 2019, pp. 8–20.

[80] J. Huang, K. Schwan, and M. K. Qureshi, “Nvram-aware logging in
transaction systems,” Proc. VLDB Endow., vol. 8, no. 4, p. 389–400,
Dec. 2014.

[81] H.-J. Boehm and D. R. Chakrabarti, “Persistence programming models
for non-volatile memory,” in Proc. ISMM. New York, NY, USA: ACM,
2016, pp. 55–67.

[82] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell, “Con-
sistent and durable data structures for non-volatile byte-addressable
memory,” in Proc. FAST. Berkeley, CA, USA: USENIX Association,
2011, pp. 5–5.

[83] F. Nawab, D. Chakrabarti, T. Kelly, and C. B. M. III, “Procrastination
beats prevention: Timely sufficient persistence for efficient crash re-
silience,” Hewlett-Packard, Tech. Rep. HPL-2014-70, December 2014.

[84] D. Hwang, W.-H. Kim, Y. Won, and B. Nam, “Endurable transient
inconsistency in byte-addressable persistent b+-tree,” in Proc. FAST.
Oakland, CA: USENIX Association, 2018, pp. 187–200.

[85] H. Chauhan, I. Calciu, V. Chidambaram, E. Schkufza, O. Mutlu, and
P. Subrahmanyam, “NVMOVE: Helping programmers move to byte-
based persistence,” in INFLOW. Savannah, GA: USENIX Association,
Nov. 2016.

[86] D. Kim, A. Memaripour, A. Badam, Y. Zhu, H. H. Liu, J. Padhye,
S. Raindel, S. Swanson, V. Sekar, and S. Seshan, “Hyperloop: Group-
based nic-offloading to accelerate replicated transactions in multi-tenant
storage systems,” in Proc. SIGCOMM. New York, NY, USA: ACM,
2018, pp. 297–312.

[87] Y. Zhang, J. Yang, A. Memaripour, and S. Swanson, “Mojim: A reliable
and highly-available non-volatile memory system,” in Proc. ASPLOS.
New York, NY, USA: ACM, 2015, pp. 3–18.

[88] Y. Zhou, R. Alagappan, A. Memaripour, A. Badam, and D. Wentzlaff,
“Hnvm: Hybrid nvm enabled datacenter design and optimization,”
Microsoft, Microsoft Research, Tech. Rep. MSR-TR-2017-8, 2017.

[89] Y. Lu, J. Shu, Y. Chen, and T. Li, “Octopus: an rdma-enabled
distributed persistent memory file system,” in Proc. ATC. Santa Clara,
CA: USENIX Association, 2017, pp. 773–785.

[90] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang,
S. Yu, and Y. Xie, “Overcoming the challenges of crossbar resistive
memory architectures,” in Proc. HPCA, Feb 2015, pp. 476–488.

[91] E. R. Giles, K. Doshi, and P. Varman, “Softwrap: A lightweight
framework for transactional support of storage class memory,” in 2015
31st Symposium on Mass Storage Systems and Technologies (MSST),
May 2015, pp. 1–14.

[92] J. Gu, Q. Yu, X. Wang, Z. Wang, B. Zang, H. Guan, and H. Chen,
“Pisces: A scalable and efficient persistent transactional memory,” in
Proc. ATC. Renton, WA: USENIX Association, Jul. 2019, pp. 913–
928.

[93] T. Wang, S. Sambasivam, Y. Solihin, and J. Tuck, “Hardware supported
persistent object address translation,” in Proc. MICRO. New York,
NY, USA: ACM, 2017, pp. 800–812.

[94] T. C.-H. Hsu, H. Brügner, I. Roy, K. Keeton, and P. Eugster,
“Nvthreads: Practical persistence for multi-threaded applications,” in
Proc. EuroSys. New York, NY, USA: Association for Computing
Machinery, 2017, p. 468–482.

[95] J. Izraelevitz, T. Kelly, and A. Kolli, “Failure-atomic persistent memory
updates via justdo logging,” in Proc. ASPLOS. New York, NY, USA:
ACM, 2016, pp. 427–442.

[96] S. Liu, K. Seemakhupt, G. Pekhimenko, A. Kolli, and S. Khan, “Janus:
Optimizing memory and storage support for non-volatile memory
systems,” in Proc. ISCA. New York, NY, USA: ACM, 2019, pp.
143–156.

[97] K. Maeng, A. Colin, and B. Lucia, “Alpaca: Intermittent execution
without checkpoints,” Proc. ACM Program. Lang., vol. 1, no. OOP-
SLA, Oct. 2017.

[98] E. Ruppel and B. Lucia, “Transactional concurrency control for inter-
mittent, energy-harvesting computing systems,” in Proc. PLDI. New
York, NY, USA: ACM, 2019, pp. 1085–1100.

[99] C. Lin, V. Nagarajan, and R. Gupta, “Fence scoping,” in Proc. SC, ser.
SC ’14. IEEE Press, 2014, p. 105–116.

[100] A. Mirhoseini, E. M. Songhori, and F. Koushanfar, “Idetic: A high-
level synthesis approach for enabling long computations on transiently-
powered asics,” in Proc. PerCom, March 2013, pp. 216–224.

[101] D. Balsamo, A. S. Weddell, A. Das, A. R. Arreola, D. Brunelli,
B. M. Al-Hashimi, G. V. Merrett, and L. Benini, “Hibernus++: A
self-calibrating and adaptive system for transiently-powered embedded
devices,” Trans. CAD, vol. 35, no. 12, p. 1968–1980, Nov. 2016.

[102] A. Mirhosseini, A. Agrawal, and J. Torrellas, “Survive: Pointer-based
in-dram incremental checkpointing for low-cost data persistence and
rollback-recovery,” IEEE Computer Architecture Letters, vol. 16, no. 2,
pp. 153–157, July 2017.

[103] S. Kannan, A. Gavrilovska, K. Schwan, and D. Milojicic, “Optimizing
checkpoints using nvm as virtual memory,” in Proc. IPDPS. USA:
IEEE Computer Society, 2013, p. 29–40.

[104] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu, “Thynvm:
Enabling software-transparent crash consistency in persistent memory
systems,” in Proc. MICRO. New York, NY, USA: ACM, 2015, pp.
672–685.

[105] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase
change memory as a scalable dram alternative,” in Proc. ISCA. New
York, NY, USA: ACM, 2009, pp. 2–13.

[106] S. Kannan, A. Gavrilovska, and K. Schwan, “pvm: Persistent virtual
memory for efficient capacity scaling and object storage,” in Proc.
EuroSys. New York, NY, USA: ACM, 2016, pp. 13:1–13:16.

[107] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology,”
in Proc. ISCA. New York, NY, USA: ACM, 2009, pp. 24–33.

[108] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali, “Enhancing lifetime and security of pcm-based main
memory with start-gap wear leveling,” in Proc. MICRO. New York,
NY, USA: ACM, 2009, pp. 14–23.

665

