
A Structured Approach to the Simulation, Analysis
and Characterization of Smartphone Applications

Dam Sunwoo, William Wang, Mrinmoy Ghosh, Chander Sudanthi,
Geoffrey Blake, Christopher D. Emmons, Nigel C. Paver

ARM R&D
{dam.sunwoo, william.wang, mrinmoy.ghosh, chander.sudanthi,

geoffrey.blake, chris.emmons, nigel.paver}@arm.com

Abstract—Full-system simulators are invaluable tools for
designing new architectures due to their ability to simulate
full applications as well as capture operating system behavior,
virtual machine or hypervisor behavior, and interference between
concurrently-running applications. However, the systems under
investigation and applications under test have become increas-
ingly complicated leading to prohibitively long simulation times
for a single experiment. This problem is compounded when many
permutations of system design parameters and workloads are
tested to investigate system sensitivities and full-system effects
with confidence.

In this paper, we propose a methodology to tractably explore
the processor design space and to characterize applications in a
full-system simulation environment. We combine SimPoint, Prin-
cipal Component Analysis and Fractional Factorial experimental
designs to substantially reduce the simulation effort needed to
characterize and analyze workloads. We also present a non-
invasive user-interface automation tool to allow us to study all
types of workloads in a simulation environment. While our
methodology is generally applicable to many simulators and
workloads, we demonstrate the application of our proposed flow
on smartphone applications running on the Android operating
system within the gem5 simulation environment.

I. INTRODUCTION

Computer architects are challenged to reason about the
intertwined and obtuse behavior that emerges from full-system
hardware and software interactions. Connecting these pieces
together and understanding the interplay between them is
essential for analyzing real systems [1] and proposing highly
optimized micro-architectures. Simulators such as gem5 [2]
which run full operating systems and software stacks are suit-
able platforms for early exploration of candidate architectures
and their potential effects on software.

Although simulating full software stacks on detailed CPU
models is insightful, a frequently encountered problem with
detailed simulation is prohibitively long run times for each
benchmark. Additionally, early modeling of candidate micro-
architectures requires exploring an intractably large design
space. These problems severely limit the amount and quality
of data that can be generated from simulation. This bottleneck
often forces architects to rely heavily on intuition and domain
specific knowledge of workloads to guide design decisions
instead of empirical data. Lack of tractable experiment and
simulation methodology also often limits investigations to non-
representative benchmarks.

There has been extensive work in tackling the problem of
simulation length. Modeling methods that raise the level of
abstraction to achieve more reasonable simulation times [3]
is one example. However, this approach is limited; while it
may allow one to more quickly simulate full workloads, it

does not solve the problem of simulating that workload on
a detailed model when an architect is negotiating finer details
and trade-offs. A more favorable approach to increase analysis
throughput is to use SimPoint [4] to distill out the important
and often repetitive phases of benchmarks, experiment on those
phases, and then project workload performance from that small
subset of the workload. This approach allows an architect
to simulate effectively full workloads on any type of micro-
architecture model, regardless of detail, in a more tractable
amount of time. This methodology has not been proven on
real applications running on top of operating systems, and,
in isolation, this technique does not address the large design
space exploration problem for analyzing different hardware
structures, algorithms, and arrangements. Exhaustive design
space exploration with detailed models can be intractable for
even modest numbers of workload SimPoints and experimental
hardware designs.

Simulating relevant applications and workloads is also
challenging due to user interaction that may need to be mod-
eled especially for emerging smartphone applications. User
interface automation tools are the obvious answer, but they
have many shortcomings. One typical problem is that the
tools may change the behavior of automated programs because
they rely on timestamps to determine when to feed inputs
to the system. In a simulated system where an architect is
exploring different system parameters, a dependence on timing
for automating interaction will not work because the systems
will vary in performance. A user automation technique that is
noninvasive and able to deal with time dilation is needed to
enable the study of interactive applications.

We address these issues by demonstrating a new analysis
flow using a combination of well-established methodologies
and statistical tools in an effort to better characterize contem-
porary, full-system smartphone applications and behavior in a
structured manner. Specifically, we contribute:

• A structured, tractable, and generic flow for detailed
design space exploration of contemporary applications
in a full-system simulation environment combining
SimPoint, Principal Component Analysis and Frac-
tional Factorial experimental design to substantially
reduce simulation time

• A generic, noninvasive, and time-dilation-tolerant GUI
automation tool for capturing and replaying GUI input

• Application of the flow to study emerging smartphone
workloads

Section II describes our flow in detail. Section III and
Section IV present a case study of applying our analysis

113978-1-4799-055-3/13/$31.00 ©2013 IEEE

methodology to contemporary smartphone applications. We
then present related work and conclude.

II. STRUCTURED METHODOLOGY

A. Overview
As stated, simulation is the preferred path to investigate

new and interesting micro-architectures. Simulations provide
the necessary flexibility in terms of modeling detail and the
ability to run modern workloads. Modern workloads, however,
require full system support and are often interactive making
it difficult to repeat simulation in a deterministic fashion.
They can also have long run times making it very expensive
to exhaustively explore the design space especially when
there are many system parameters to consider. A structured
methodology that could simultaneously (i) ensure deterministic
simulation on emerging workloads, (ii) reduce the required
runtime of individual workloads, and (iii) systematically nar-
row down the design space parameters to explore is desirable.

This section outlines our methodology that provides all
these desirable characteristics. The flow is comprised of four
key components: GUI automation, SimPoints, principal com-
ponent analysis, and fractional factorial designs. These com-
ponents are all well-established methodologies on their own,
and some are already widely used for a variety of research.
The structured flow that combines these methodologies and
the application of them to a contemporary workload suite is
novel.

• GUI Automation: Our AutoGUI framework allows
full-system interactive workloads to be simulated in a
deterministic fashion.

• SimPoint: Once we enable deterministic simulation,
we use SimPoint to identify short key phases of
workloads that can be used to project full run behavior.
We perform detailed simulation on just those phases
to significantly reduce the simulation time for each
workload. We show that SimPoint works well for our
full-system smartphone workloads.

• Principal Component Analysis (PCA): We apply
PCA to contrast our workloads and workload phases
from each other and from traditional benchmark suites.
PCA exposes the characteristics that make them dif-
ferent.

• Fractional Factorial Design: Fractional Factorial De-
sign significantly narrows down the number of exper-
iments required to explore a large design space while
maintaining statistical integrity.

Our proposed flow is summarized in Figure 1. Each
methodology in the flow will be described in greater detail
in the remainder of this section.

While our methodology is generic enough to be used with
any simulator, we use gem5 [2] with the ARM architecture.
gem5 has great flexibility in configuring various system pa-
rameters. It supports a full-system environment and peripherals
so that unmodified operating systems can boot. The ARMv7
architecture models are stable and support the latest Linux
and Android distributions. gem5 has a fast functional CPU
model (atomic CPU) and a detailed out-of-order CPU model
(O3 CPU).

Comprehensive
Characterization

Tractable Simulation

AutoGUI

SimPoints

Fractional
Factorial

Principal
Component

Analysis

Workloads

Repeatable
Simulation

Reduced
Simulation Time

Key Phase
Identification

Workload
Comparison

Phase
Comparison

Reduced # of
Experiments

Sensitivity
Analysis

Guided
Parameter
Selection

Full Runs for
Correlations

Reduced Detailed
Simulation

Fig. 1: Flowchart of our proposed methodology.

B. GUI Automation for Deterministic Replay
A major difficulty when analyzing Android applications

is generating reproducible results without manual user input.
This problem can be solved with software automation tools
like Xnee [5], Robotium [6], and MonkeyRunner [7]. However,
slow execution speeds make it impractical to test the automa-
tion in simulators. It is also desirable to have an automa-
tion framework that is portable across multiple applications,
operating systems (OS’s), boards, simulators, and emulators.
Maintenance costs increase and ease of use decreases with
each additional framework. When unique implementations are
necessary for each application and OS, the time to develop
a suite of automated applications also increases. The tool we
developed and will make publicly available, called AutoGUI,
addresses these problems.

Recording and replaying time-synchronized input on dif-
ferent machines, simulated or real, can be problematic. For
example, the load screen for a game will appear later on a
slower machine than on a faster one. When replaying time-
synchronized input on these systems, the interaction with the
game after the load screen will replay earlier on the slower
machine than on the faster one. To address this issue, AutoGUI
allows users to also synchronize on frame buffer images.

Xnee, an automation tool for Linux, records user input
and the X11 windowing system events that occur before the
user input. During replay, X11 events are used to synchronize
user input playback. The use of X11 events is specific to the
software stack running on top of the Linux kernel. Robotium
and Google’s MonkeyRunner are automation tools tied to the
Android OS. Robotium is additionally tied to the application,
requiring the user to write an automation script using knowl-
edge of the application layout, nomenclature, and the Android
API. MonkeyRunner is more general, replaying mouse and
keyboard events rather than application-specific events, but
uses time to synchronize input. Furthermore, manually writing
automation files for Robotium and MonkeyRunner is a tedious
process.

AutoGUI addresses the shortcomings of existing solutions

114

1 2 3 4 5 6 7

Start Simulation

Replay capture / Fast Forward (gem5 atomic)

FastF

Replay capture / Detailed Simulation (gem5 O3 CPU)
Restore from
checkpoint Checkpoint / Restore from checkpoint Exit

(Variable Delay)

Capture GUI input (QEMU)

Checkpoint

Fig. 2: Capture and Replay of Angry Birds with AutoGUI on gem5

and meets all of our requirements. AutoGUI is not dependent
on the software platform because it operates on the Remote
Framebuffer Protocol which many OS’s support via Virtual
Network Computing (VNC). Many emulators and simulators
natively use VNC to allow users to interact with the emulated
or simulated GUI. VNC is also easily installed onto devices.
AutoGUI creates automation files on-the-fly by capturing
touchscreen and keyboard events as the user interacts with an
application without any specific software dependencies.

The AutoGUI methodology primarily consists of two parts,
capture and replay. Though AutoGUI is portable across mul-
tiple platforms, for our studies we perform the automation
capture on the Quick EMUlator (QEMU) [8] and perform
the automation replay on gem5. We use QEMU because the
emulation speed is much faster than gem5 atomic and O3
models. AutoGUI connects to a QEMU instance running the
target OS. Users instruct AutoGUI when to start and stop
recording and what inputs and reference points to capture as
they interact with applications.

AutoGUI does require that both the replay and capture
environment are similar. Specifically, we kept the display
resolution and file systems the same in both gem5 and QEMU.
Though not strictly necessary, using the same filesystem
allowed us to install applications and to initialize them by
running them once on the faster QEMU environment.

As shown in Figure 2, the popular game Angry Birds
has been automated with AutoGUI. The steps involved with
starting Angry Birds and interacting with it are shown in the
figure: ¶ boot Android and click through to the Angry Birds
application icon, ·—¸ click through the initial screen and
select a game level to play, ¹—º wait for the application to
pan the level and rest on the screen ready for player input, »
pull back and release the angry bird, and, assuming only one
bird fling is necessary to complete the game level, ¼ wait for
the level to complete and display a score.

Streams captured from QEMU are fast forwarded on the
gem5 atomic model to the critical portion of the workload
and continue on the detailed O3 model. Most of the replay
involves syncing on frame buffers and replaying recorded
touchscreen inputs. However, in order to analyze run-to-run
variability common in real applications, special events in the
AutoGUI capture support arbitrary insertion of time delays. In
Angry Birds, a checkpoint event recorded at ¹ notifies gem5
to checkpoint its state. The checkpoint is then resumed on
multiple instances of the gem5 atomic model, each varying
a runtime delay parameter. After idling for the prescribed
time, another checkpoint is automatically taken. With this
methodology, multiple post-delay checkpoints are created; a
run from each post-delay checkpoint will exhibit slightly

different behavior just as different test runs would in a real
system. These checkpoints are then replayed on the gem5
O3 model at º. The replay continues until ¼ when a final
AutoGUI exit event is replayed causing the simulator to stop.

C. SimPoints
Once we are able to automate our workloads, we generate

SimPoints [9] for them. SimPoint is a widely-used methodol-
ogy that gathers small, representative samples of a workload
and uses them to project characteristics of the complete exe-
cution of the workload. SimPoint commonly uses Basic Block
Vectors (BBV’s) that keep track of the frequency of basic
block execution to represent an interval. Once the BBV’s are
generated, SimPoint uses Euclidean distance to compare the
vectors and applies the K-means clustering algorithm to group
them. The Bayesian Information Criterion (BIC) is used to
determine the quality of the clusters and, thus, the optimal
number of SimPoints. Finally, one SimPoint per cluster is
chosen to form the SimPoints that represent the full workload.

While SimPoint has been commonly used with traditional
bare-metal benchmarks such as the SPEC benchmark suites,
the use of it in a more complex full-system environment with
operating systems and interactive applications has not been
shown or verified. We generate SimPoints for our chosen
smartphone applications and empirically show that they still
have good accuracies for such workloads.

In addition, while SimPoints are traditionally used for
projecting the full-run characteristics with shorter samples,
we also use them to characterize the phase behavior of the
workloads. Once the key phases are identified, we examine
how distinct the phases are within the same workload and how
similar some phases are across workloads.

D. Principal Component Analysis (PCA)
The next step in our methodology is to apply PCA on our

workloads. PCA [10] is a mathematical procedure that is used
on a large data set to distill out its principal components, a set
of linearly uncorrelated variables. The principal components
are generated so that the first principal component accounts
for as much of the variability in the data as possible, and
each succeeding component accounts for as much of the
remaining variability as possible. It is thus useful for quickly
extracting the similarities and dissimilarities of characteristics
within the data set. PCA has been recently used in workload
characterization of SPEC2000 [11], [12] and SPEC2006 [13]
benchmark suites. In this work, we employ PCA (i) to con-
trast our smartphone workloads against traditional benchmark
suites and also (ii) to contrast different phases in individual
workloads using SimPoints.

115

As the principal components are sorted by variance, the first
few components are generally enough to get an idea of how
similar or dissimilar the data points are. An oft-used method of
visualizing the result is to generate a scatter plot with the first
two principal components as the X and Y axes, respectively.
Sections IV-B and IV-C provide concrete examples of such
plots and analyses. Each axis will be an orthogonal linear sum
of the original observed variables. For example, if two data
points on this chart have a similar X value but significantly
different Y value, one can expect that the variables used in the
X axis are similar while the difference lies in the variables of
the Y axis. Thus, analysts can quickly get an overview of the
large data set without having to compare the individual data
points for all the variables.

E. Fractional Factorial Design

Even with a reduction in the number and length of bench-
marks using PCA and SimPoints, exploring the design space of
a modern microarchitecture is difficult due to the large number
of parameters that need to be tested for the benchmarks of
interest. Brute force testing of all possible parameter configu-
rations, known as a full-factorial experiment, quickly leads to
an intractable number of simulations to perform and analyze.

To reduce the number of simulations to perform, we utilize
a rigorous design of experiments technique called Fractional
Factorials. Fractional factorial designs [14] were created by Sir
Ronald Fisher in the 1920’s when researching statistical tech-
niques for agricultural research. Fractional factorial designs use
a small subset of the full-factorial design space. Using fewer
experiments retains validity of the results by reformulating
the question asked of the experiments. Instead of trying to
determine directly “what parameters are important and how
much improvement do they provide the micro-architecture?”,
the question is simplified to “what parameters are important?”.
Fractional factorials are used in our flow to answer this
question first, prior to extensive simulation, by screening for
the parameters that significantly impact performance.

Fractional factorials work by varying all parameters si-
multaneously in a fashion that is balanced, orthogonal, and
unbiased. This allows strong conclusions to be drawn about
whether a parameter makes a statistically significant impact
on performance and should be investigated further. Figure 3
illustrates this property. The cube visualizes the full factorial
set of experiments for three parameters which map to the
axes of the cube. Each vertex represents each permutation of
settings for each parameter. The permutations are represented
by the tuple of −’s and +’s. These +’s and −’s represent
the high and low settings for each variable being tested in
the design. Fractional factorial designs are meant as screening
experiments, so more than two settings per parameter is not
needed. For example, in Figure 3 one might select 32kB as
the − setting and 128kB as the + setting for the DL1 Size
parameter to screen whether a benchmark sees DL1 Size as
an important parameter. As shown, the fractional factorial
experiment selection of parameter settings represented by the
green-shaded polygon is balanced across the experiment space.
In fact, each parameter is set to − and + an equal number of
times. This balanced construction makes fractional factorials
easy to analyze. Because each parameter is set an equal number
of times to − and +, we can use the following equation to

DL
1$
As
so
c$

)))$ +))$

)+)$

)++$ +++$

))+$

DL1Lat

+)+$

++)$

Fig. 3: Visualization of the distribution of experiments in a 3
dimensional design space using a common

one-parameter-at-a-time approach (red) and a
fractional-factorial design (green).[16]

estimate the Importance of each parameter:

|xi| =
∑
+

rn −
∑
−

rn (1)

This equation states, for each parameter xi, sum up the
responses of the system, rn, when the parameter is set to +
and subtract the sum of the responses when the parameter
is set to − to get an estimate of the importance of that
parameter. In contrast, the traditional vary-one-parameter-at-
a-time experiment, represented by the red-shaded polygon in
Figure 3, is heavily biased towards setting parameters as − (a
setting of + is only selected once per parameter) and cannot
be analyzed using equation 1.

The following caveats must be accounted for when using
fractional factorials in our flow. First, a low − and high +
setting for each parameter to be screened must be selected.
One must be careful in the selection of the + and − settings
as too narrow of a range may mask a parameter’s importance
while too large of a range may exaggerate a parameter’s
importance. We will see in Section IV-D an example of this
hazard. Since only two parameter settings are used, fractional
factorial experiments assume that moving from − to + will
produce a generally monotonic response. For our experiments,
this was seen as a valid assumption.

Second, fractional factorials assume that high-order effects,
combinations of three or more parameter settings leading
to a response greater than the sum of it parts, are small
compared to main effects. Fractional factorials achieve a small
number of experiments by confounding high-order effects with
the main effects. More information on confounding can be
found in [15]. If high-order effects are suspected, the only
solution to determine their impact is to run more experiments.
In our experience with working on fractional factorials for
micro-architecture design space exploration, high-order effects
between three or more parameters are in fact small.

In summary, the following steps are used to apply fractional
factorial designs in our workload evaluation methodology:

1) Choose the desired parameters to test.
2) Choose the low (−) and high (+) settings for each

parameter, being careful to pick an approriate range
between low and high.

3) Pick the number of experiments to run, also known
as the Resolution of the design [15], to account for
any suspected higher-order effects.

116

TABLE I: Baseline system parameters and ranges for
fractional factorial designs (for Section IV-D).

Parameters Default Low (−) High (+)
Integer RegFile Size 128 80 196

FP RegFile Size 128 80 196
Inst Queue Size 32 8 128

ROB Size 40 20 196
ALU Nominal Nominal Large

Load Queue Entries 16 8 64
Store Queue Entries 16 8 64

DTLB Size 64 8 128
ITLB Size 32 8 128
BP Sizes Small Small Large

L1 I-Cache Size 32kB 8kB 64kB
L1 I-Cache Associativity 2 2 8

L1 D-Cache Size 32kB 8kB 64kB
L1 D-Cache Latency 2 cycle 4 cycles 2 cycles

L1 D-Cache Associativity 2 2 8
L2 Bus Width 16 32 64
L2 Cache Size 1MB 64kB 8MB

L2 Cache Latency 12 cycles 30 cycles 12 cycles
L2 Cache Associativity 16 16 32

L2 Prefetcher Type Stride None Stride
Memory Bus Width 16 16 32
Memory Bus Clock 1GHz 1GHz 2GHz

Memory Latency 54ns 108ns 20ns

4) Perform the experiments.
5) Use equation 1 to estimate the impact of each pa-

rameter. Pick the top n parameters with the largest
impact to use in further experiments.

After the top parameters are found, additional experiments
can be conducted on these parameters to answer remaining
questions asked in a design space exploration such as “how
much performance gain is expected?” or “where are the
inflection points for a parameter?”.

III. INFRASTRUCTURE AND WORKLOADS

A. Infrastructure
We modified the gem5 simulator to add the capability to

generate basic block vector profiles for SimPoint generation.
Basic block profiling and checkpoint generation are conducted
in the atomic mode of gem5 which provides the fastest exe-
cution times. We then resume from the SimPoint checkpoints
using the detailed CPU models for the analyses we want to
carry out.

The default column of Table I shows the baseline config-
uration for the out-of-order (O3) ARMv7 CPU and platform
we used as the baseline system. The values chosen are typical
settings for a modern microprocessor architecture. For this
work, we only investigate uni-processor system configurations.

B. Description of Workloads
To demonstrate our methodology, we use the flow to char-

acterize emerging smartphone applications. Using AutoGUI as
described in Section II-B, we created an Android Jelly Bean
suite, shown in Table II, that contains a set of smartphone
workloads including traditional benchmark applications as
well as popular gaming and productivity applications. As the
benchmark applications exercise specific components of the
Android system, they are useful for in-depth study of specific
components of the system, such as the Dalvik virtual machine
or SQLite in Android, or components like the CPU, memory
and storage in the hardware platform. Using popular appli-
cations for analysis helps ensure systems have good overall
performance for typical use-cases on smartphones like web
browsing, gaming and productivity.

Fig. 4: Screenshot of ARM Streamline analyzing a simulated
run of BBench from gem5.

Studying the behavior of popular applications on Android
gives architects hints as to where to optimize to improve
system efficiency. Analyzing the benchmark applications helps
steer investigations of specific components inside the Android
system. The workload suite can be enriched with more popular
applications, such as social networking, entertainment, navi-
gation or augmented reality applications, with the same GUI
automation methodology. They are not included in the current
workload suite due to the lack of camera, GPS or necessary
network components in the gem5 simulator infrastructure. This
peripheral development is an area for future work.

C. ARM Streamline
We also use the ARM Streamline Performance Analyzer

[24] that is part of the ARM DS-5 suite. Streamline was
originally developed for analyzing execution on real hardware
platforms but has been recently adapted to view executions
from the gem5 simulator as well [25]. Figure 4 shows an
example of Streamline visualizing results of a BBench run
generated from gem5.

Streamline visualizes the complex behavior of full-system
applications and enhances one’s capability to comprehend the
temporal behavior of the benchmark. It displays the various
gem5 statistics along with the Linux process and thread view
at the bottom. It can display the various statistics broken down
by process and thread. Streamline also shows frames buffer
output in the timeline so that users can have insight into what
is happening within a frame or, conversely, what is happening
visually when interesting changes in statistics occur.

IV. DETAILED ANALYSES ON WORKLOADS

A. Correlation of SimPoints
As our characterization flow relies on the use of SimPoints,

we first need to make sure that the SimPoints correlate well
with the full runs for our workloads and target platforms. We
experimented with various SimPoint lengths, or interval sizes,
ranging from 100K to 100M instructions and discovered that,
for our workloads, 100M instruction intervals provide the best
balance between accuracy and reasonable numbers of Sim-
Points. We designated a maximum of 50 SimPoints (maxK)
and a 10M instruction warm-up period for each application
to keep the storage requirement reasonable. An average of 28
SimPoints were generated per workload. Figure 5 compares
the CPIs from the full runs of the benchmarks against those

117

TABLE II: Description of smartphone workloads.
Workload Type Scope Description Reported results

AndEBench [17] Benchmark Dalvik / CPU A benchmark application from EEMBC[18] that includes the original CoreMark
written in C language and a Java reimplementation of CoreMark. The internal
algorithms concentrate on integer operations on linked lists, matrices, and state
machines. The workload can be configured to run in single or multiple threads.

Two scores represent the
C native and Java perfor-
mance results in ‘itera-
tions per second’.

CaffeineMark [19] Benchmark Dalvik A benchmark application that uses six tests to measure various aspects of
Java virtual machine (VM) performance, including Sieve, Loop, Logic, String,
Method and Float. Each test runs for approximately the same length of time. The
score for each test is proportional to the number of times the test was executed
divided by the time taken to execute the test.

Scores for each of its six
constituent tests, as well
as the overall score that
is the geometric mean of
the individual scores.

RL Benchmark
[20]

Benchmark SQLite A synthetic benchmark application that generates a pre-defined number of
various SQL queries to test SQLite performance in Android.

The overall score for all
the tests as well as indi-
vidual test scores.

BBench [21] Benchmark Browser A browser benchmark that measures the browsing experience in terms of how
fast browsers render web pages. BBench v2.0 loads nine web pages into the
browser one by one, it includes the following popular web pages, Amazon,
BBC, CNN, Craigslist, eBay, Google, MSN, Slashdot, Twitter, excluding ESPN
and YouTube as in the full version.

The load time of each
web page as well as the
overall load time for all
the web pages.

Angry Birds [22] Gaming System A game application used to measure the gaming experience on the Android
platform. The workload loads the Angry Birds application, pull the bird back,
release a fling shot, hit the pigs, and complete the first level in one hit. Angry
Birds is selected due to its popularity, and the application works offline and is
free from Google play.

The run time of the
workload is measured by
reported gem5 statistics.

Kingsoft Office
(WPS) [23]

Productivity System A productivity application used to measures the load time of office applications
such as Word, Powerpoint and Spreadsheet. The workload loads the Kingsoft
Office application, and creates Word, Spreadsheet and Powerpoint documents
in turn using templates. Kingsoft Office application is selected due to the
increasing importance of productivity applications on tablets/smartphones, and
the application works offline and is free from Google play.

The run time of the
workload is measured by
reported gem5 statistics.

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

an
de
be
nc
h	

an
gry
bir
ds
	

bb
en
ch
	

ca
ffe
ine
ma
rk	

rlb
en
ch
	

wp
s	

CP
I	

Full	 run	

SimPoints	

Fig. 5: Correlation of CPIs (Full runs vs. SimPoints).

projected by using SimPoints. The average error from the full
runs is within 2.5%1.

Previously, SimPoint has mostly been used with traditional
bare-metal benchmarks. Its effectiveness has not been well-
demonstrated for full-system and interactive benchmarks. We
empirically show that SimPoint can be very accurate even for
such benchmarks and platforms. Our interval study indicated
longer intervals led to better accuracy. This might be due to
the fact that longer intervals capture more full system effects
(e.g., timer interrupts) and represent them more accurately.

B. PCA for Workload Comparison
After establishing our benchmark suite largely from intu-

ition, we were interested in statistically understanding how our
smartphone workloads are different from traditional workloads.
We generated SimPoints for the SPEC2000 and SPEC2006
benchmark suites (both INT and FP suites) using the reference
input sets. Once we had the detailed simulation results of
these SimPoints, we fed the projected full-run gem5 statistics
through PCA along with the same statistics from the smart-
phone workloads.

1It might be possible that shorter intervals lead to better accuracies, but this
accuracy would come at the cost of significantly more SimPoints.

andebench(

angrybirds(
(

bbench(

caffeinemark(

rlbench(

wps(

46(

44(

42(

0(

2(

4(

6(

8(

44(42(0(2(4(6(8(10(12(

Android(

specInt2000Ref(

specInt2006Ref(

specFp2000Ref(

specFp2006Ref(

X-axis (PC1) key components:
CPI, DTLB MPKI, L2 MPKI, L1-D MPKI,

IQ_full_events, ...

Y-axis (PC2) key
components:

L1-I MPKI, ITLB MPKI,
BP MPKI, Inst mix, ...

Fig. 6: Top two PCs (PC1 and PC2) from PCA on
smartphone workloads and SPEC benchmarks. Each data

point represents a benchmark from the corresponding
benchmark suite.

PCA produces several equations constructing the principal
components. In Figure 6, we present the top two principal
components, PC1 on the X-axis and PC2 on the Y-axis,
grouped by benchmark suite. The closer two data points are
on this chart, the more similar their characteristics are. The
top factors on the X-axis include CPI, DTLB MPKI, L2
MPKI, and so forth. The top factors on the Y-axis include
L1-I MPKI, ITLB MPKI and branch predictor MPKI. It is
interesting to note that PCA identifies and separates the data-
side and instruction-side statistics out to two separate axes
automatically.

In Figure 6, the smartphone workloads are clearly distin-
guished from the rest of the workloads along the Y-axis. This
implies that these workloads differ from the traditional SPEC
benchmarks in instruction-side characteristics. This result is
in-line with findings from similar studies [21]. The difference,

118

!4#

!3#

!2#

!1#

0#

1#

2#

3#

4#

5#

6#

7#

!10# !8# !6# !4# !2# 0# 2# 4#

andebench#

angrybirds#

bbench#

caffeinemark#

rlbench#

wps#

X-axis (PC1) key components:
CPI, LSQ_full_events, L1-D MPKI,

L2 MPKI, DTB MPKI, ...

Y-axis (PC2) key components:
BP MPKI, ITLB MPKI,

L1-I MPKI, # Branches, ...

Fig. 7: Top two PCs (PC1 and PC2) from PCA on individual
phases of smartphone workloads.

!4#

!3#

!2#

!1#

0#

1#

2#

3#

4#

5#

6#

7#

!10# !8# !6# !4# !2# 0# 2# 4#

andebench#

angrybirds#

bbench#

caffeinemark#

rlbench#

wps#

X-axis (PC1) key components:
CPI, LSQ_full_events, L1-D MPKI,

L2 MPKI, DTB MPKI, ...

Y-axis (PC2) key components:
BP MPKI, ITLB MPKI,

L1-I MPKI, # Branches, ...

Fig. 8: PCA of projected full runs using weighted SimPoints
using the same formula as in Figure 7.

however, is that we did not have to manually analyze and
compare individual statistics to lead to this discovery; our
methodology revealed this for us. The same methodology
can be applied systematically to other emerging workload
suites. Based on such analyses, one can probe further by
comparing individual statistics identified by PCA or prune
similar workloads to reduce simulation time.

C. PCA for Phase Analysis
Workloads often have very distinct phases. To analyze

the phase behavior of our workloads, we also applied PCA
on individual phases identified by SimPoint for each of the
smartphone workloads. This is unlike previous approaches that
used PCA for whole-workload characterization [11], [12], [13].
As SimPoint identifies many lightly-weighted phases, we only
included those SimPoints with a weight of at least 1% in the
analysis.

Figure 7 displays the top two principal components for
individual phases in our smartphone workloads. Similar to
Figure 6, the X-axis is composed of data-side statistics includ-
ing CPI, LSQ full events, L1-D MPKI, and L2 MPKI, while
the Y-axis is composed of instruction-side statistics such as

branch predictor MPKI, ITLB MPKI, and L1-I MPKI. Some
workloads like Angry Birds have most phases clustered closely
together while other workloads have distinct phases spread
across the chart. For example, RLBench phases are widely
spread across the X-axis indicating variation in data-side char-
acteristics while AndEBench phases are spread across the Y-
axis thus indicating variation in instruction-side characteristics.

For comparison, Figure 8 shows the PCA chart for the
projected full runs based on weighted SimPoints. This figure
uses the same principal components as the axes generated by
the per-phase PCA in Figure 7 and uses the same ranges for
those axes. Naturally, each full run is represented by a single
data point. Workloads that do not have many distinct phases,
like Angry Birds, exhibit behavior that is statistically well-
represented by the full-run. On the other hand, AndEBench,
for example, has very few phases (in Figure 7) that are close
to its projected full run data point (in Figure 8). In this case,
analyzing the full-run (or projected full run if using SimPoints)
without considering the distinct phases would not accurately
capture the nature of the workload.

D. Sensitivity Studies based on Fractional Factorial Designs
For the sensitivity study to identify the most important

system parameters for each workload, we use fractional fac-
torial to generate the list of experiments. Table I shows the
complete list of system parameters and their ranges (Low and
High) we used for this sensitivity study. Figure 9 shows the
result of the fractional factorial experiments. The chart shows
the sensitivity of each parameter normalized by the maximum
impact for each workload. The experiments are generated from
SimPoints of each workload, but we also display results for
the same experiment using full runs, in dashed lines, for
some of the workloads. We can see that the study done using
SimPoint tracks the full runs well2. This type of sensitivity
study is critical for pruning the design space by filtering out
the parameters that are not important. This pruning enables
the designer to concentrate on only five or six important
parameters for a given benchmark rather than work with the
complex problem of looking at all the parameters shown in
Table I.

To validate the effectiveness of our SimPoint-based frac-
tional factorial tool, we perform detailed sensitivity studies on
the BBench and Caffeinemark benchmarks for a select number
of parameters with finer granularity. These two benchmarks
were chosen because they differ considerably in the parameters
they are sensitive to. These studies use the full runs to rule out
any error introduced by SimPoint projection. From Figure 9,
we see that BBench is most sensitive to L2 size and to
memory latency while Caffeinemark is primarily sensitive
to instruction queue (IQ) size. Therefore, for our sensitivity
analysis, we choose to sweep these three parameters. We also
sweep the branch predictor size parameter, which fractional
factorial experiments determined was not significant for either
of the benchmarks, to demonstrate that the parameter is indeed
irrelevant.

Figure 10 plots the relative performance improvement of
BBench and Caffeinemark when the L2 cache size changes

2The full runs missing from the chart did not finish execution for all
configurations. The difficulty in managing long jobs and ensuring they run
to completion without failure is one of the primary problems we are trying to
solve with the run time and experiment reduction methodology proposed in
this paper.

119

Int
Re
gF
ile
*

Flo
atR
eg
Fil
e* IQ

*
RO
B*

AL
U*

LQ
En
tri
es*

SQ
En
tri
es*

dtb
_si
ze*

itb
_si
ze*

BP
_si
ze*

L1
IC_
siz
e*

L1
IC_
ass
oc
*

L1
DC
_si
ze*

L1
DC
_la
ten
cy*

L1
DC
_a
sso
c*

L2
bu
sW
idt
h*

L2
C_
siz
e*

L2
C_
lat
en
cy*

L2
C_
ass
oc
*

L2
C_
pre
fet
ch
er_
typ
e*

me
mB
us
Wi
dth
*

me
mB
us
Clo
ck*

me
mL
ate
nc
y*

Andebench*

Angrybirds*

BBench*

Caffeinemark*

RLBench*

WPS*

Full_Andebench*

Full_BBench*

Full_Caffeinemark*

Full_RLBench*

Core L1 Cache L2 Cache Mem

Fig. 9: Sensitivity of system parameters generated from fractional factorial designs with SimPoints. Dashed lines indicate the
same studies based on available full runs to demonstrate the effectiveness of SimPoints on fractional factorial designs.

from 64kB to 8MB. The IPC improvement is plotted relative to
its corresponding value for the lowest parameter value (64 KB).
As predicted by the fractional factorial experiments, BBench
performance is indeed very sensitive to L2 size. The difference
in performance between the smallest and largest cache is
greater than 22%. Caffeinemark performance, in contrast, only
fluctuates about 1% over the large range of cache sizes.

Figure 11 reports the relative performance improvement of
BBench and Caffeinemark when the memory latency changes
from 108ns to 20ns. The results again demonstrate the effec-
tiveness of our fractional factorial experiments. While BBench
experiences a performance change of 30% between the fastest
and slowest memories, Caffeinemark is found to be insensitive
to memory latency as predicted in Figure 9.

Figure 12 lists the relative improvement of the two bench-
marks under study when the IQ size is varied from 8 to 256. As
noted by the fractional factorial experiments, the IQ size is the
most sensitive parameter for Caffeinemark whose performance
is affected by about 55%. However, BBench is found to be
insensitive to this parameter. It should be noted from the figure
that the results of fractional factorial experiments are heavily
dependent on the ranges of values chosen for the parameters. In
this example, even though the performance difference is huge
for Caffeinemark, it can be seen that the performance saturates
after the IQ size exceeds 32. Therefore, for the fractional
factorial experiments, if the lowest value for IQ size were
chosen to be 32 instead of 8, IQ size would not have emerged
as an important parameter for Caffeinemark.

To conclusively demonstrate the effectiveness of the frac-
tional factorial experiments, we choose to plot the sensitivity
of a parameter that has been reported to be insensitive for both
the benchmarks. The results of performance sensitivity of the
benchmarks to the size of the branch predictor is shown in
Figure 13. As expected, both benchmarks are relatively insen-
sitive to branch predictor size with a maximum performance
delta of 1.5%.

Figures 10—13 conclusively show the effectiveness of the
fractional factorial experiments in pruning the design space.

0%	

5%	

10%	

15%	

20%	

25%	

64kB	 128kB	 256kB	 512kB	 1MB	 2MB	 4MB	 8MB	

Pe
rf
or
m
an

ce
	 G
ai
n	
ov
er
	 L
ow

	 (6
4k
B)
	

L2	 Cache	 Size	

BBench	

Caffeinemark	

Fig. 10: L2 cache size sensitivity.

0%	

5%	

10%	

15%	

20%	

25%	

30%	

35%	

20ns	 27ns	 40ns	 54ns	 78ns	 108ns	 Pe
rf
or
m
an

ce
	 G
ai
n	
ov
er
	 L
ow

	 (1
08

ns
)	

Memory	 Latency	

BBench	

Caffeinemark	

Fig. 11: Memory latency sensitivity.

The results also show that factors identified by the fractional
factorial experiments are very dependent on the initial range
of the parameters. A different maximum and minimum value
of a parameter can completely change the results.

E. Discussion on Simulation Time
In our methodology, we have reduced simulation time

in two dimensions. First, SimPoint reduces the simulation
time per workload by selecting small, representative samples
of each workload. By breaking down the serial workload
into multiple pieces, the simulation becomes very easy to
parallelize. The results are then stitched together with weights
to project full workload behavior. There are a total of 169

120

0%	

10%	

20%	

30%	

40%	

50%	

60%	

8	 16	 32	 64	 128	 256	

Pe
rf
or
m
an

ce
	 G
ai
n	
ov
er
	 L
ow

	 (8
)	

Instruc7on	 Queue	 Size	

BBench	

Caffeinemark	

Fig. 12: Instruction Queue size sensitivity.

0.0%	

0.5%	

1.0%	

1.5%	

2.0%	

2.5%	

3.0%	

2048	 4096	 8192	 16384	 32768	

Pe
rf
or
m
an

ce
	 G
ai
n	
ov
er
	 L
ow

	 (2
04

8)
	

Branch	 Predictor	 Size	

BBench	

Caffeinemark	

Fig. 13: Branch predictor size sensitivity.

SimPoints generated for the six smartphone workloads, and
each takes about 10 minutes to run. Assuming a simulation
farm of 100 slots, it would take 20 minutes to run all of
the SimPoints. The full runs, however, take 50 hours to run
on average and cannot take advantage of a large simulation
farm, resulting in 150× overhead compared to the SimPoint
approach. We also noticed that SimPoints of our workloads fol-
low the Pareto principle where only 20∼30% of the SimPoints
account for more than 80% of the total weights. We discovered
that we were able to reach the same conclusions on sensitivity
studies by just using those heavily-weighted SimPoints saving
an additional 3∼4× of simulation time.

Second, fractional factorial designs significantly reduce
the number of experiments to run, thus reducing simulation
time. In our experiments in Section IV-D, we ran a sensitivity
study on 23 system parameters. A brute-force exhaustive
study would have needed 223, or 8 million, experiments.
Fractional factorial reduces the number of experiments to 64.
An alternative would be to do a simple one-parameter-at-a-time
study (23 experiments) but at a cost of doing a significantly
less-rigorous study. We demonstrate that the combination of
SimPoint and fractional factorial design effectively reduces
orders of magnitude of simulation time while maintaining
statistical rigor in the analyses.

F. Full-system Statistics
ARM Streamline is capable of visualizing gem5 statistics

and can attribute statistics to certain processes and threads us-
ing the Linux kernel scheduling trace. Analyzing the workloads
using Streamline reveals many unforeseen aspects that could
be useful for further optimizations.

For example, Streamline reveals that BBench
has three primary threads: android.browser,
WebViewCoreThread, and SurfaceFlinger. Despite
having a total of 28 processes and 158 threads active

0%	

20%	

40%	

60%	

80%	

100%	

0-‐1
0u
s	

10
-‐10
0u
s	

10
0u
s-‐1
ms
	

1-‐1
0m
s	

10
-‐10
0m
s	

10
0m
s-‐1
s	 1s

-‐	

Cu
m
ul
a&

ve
	 R
un

&m
e	

Context	 Period	 Dura&on	

andebench	

angrybirds	

bbench	

caffeinemark	

rlbench	

wps	

Fig. 14: Cumulative runtime distribution per context period
duration lengths.

throughout the benchmark, the total run-time for the three
primary threads accounts for more than 96% of the full
BBench workload. Detailed per-thread analysis through
Streamline shows that the behavior of these threads are very
different. We are actively analyzing such thread-specific
behavior for optimization opportunities as a part of ongoing
heterogeneous systems research.

Also, as the workloads we simulate are full-system, there
is a lot of context switching occurring throughout each ex-
periment. Figure 14 shows the cumulative runtime distribution
per context period duration. For most of the workloads, the
runtimes are biased between the 1ms and 100ms range. Dif-
ferent threads have different average context period durations.
These type of analyses are useful for studying Linux scheduler
behavior and relevant optimizations.

V. RELATED WORK

Other previous works have studied characteristics of mobile
workloads. Gutierrez et al. introduced BBench and character-
ized a few other Android applications [21]. AM-Bench [26]
focused on multimedia benchmarks. MobileBench [27] inves-
tigated the user experience while MEVBench [28] primarily
examined mobile vision benchmarks. All of these works were
based on real hardware platforms and did not have a systematic
mechanism of handling deterministic replay of GUI inputs.
The use of real hardware also prohibits thorough sensitivity
studies and gathering intrinsic statistics.

PCA has been used in a series of works to contrast
workload suites. The analysis focused primarily on SPEC
benchmark suites [11], [12], [13]. We take this type of analysis
a step further by applying it to contemporary mobile workloads
and by contrasting them with traditional benchmarks. We also
apply PCA on phases within workloads to analyze the phase
behavior.

Statistically rigorous techniques to evaluate design spaces
have been appearing more frequently in the systems research
community. Researchers are realizing that systems are becom-
ing increasingly complicated. Measurement noise from virtual
machines, spurious interrupts, OS scheduling decisions and
other sources make simple analysis techniques inadequate and
instead require more statistical rigor to explain the effects
on performance seen from experiments. Recent papers by
De Oliveria et al. [29] and Curtsinger et al. [30] show that
analyzing software and systems can no longer be adequately
done by running a few benchmarks and taking a simple average
of the results due to uncontrolled variables in a system. Yi
et al. [31] used Plackett-Burman designs [32] to do similar
design space explorations as this work but did not present

121

a comprehensive approach to reduce simulation time as this
work has done. Another related statistical work is regression
modeling done by Lee et al. [33]. The main goal of Lee et al.
was to predict the system performance using regression-fitted
models formed from sample points in the design space using
a statistically sound method to produce those sample points.
These regression models were then intended to characterize the
full design space. One of the disadvantages of this work is that
Lee et al. needed domain specific knowledge of their bench-
mark applications and micro-architecture to properly form
their regression models. In contrast, the goal of our work is
to characterize benchmarks and micro-architecture; predicting
performance of different design points is a secondary goal
satisfied by performing additional experiments.

VI. CONCLUSIONS
In this paper, we described a structured approach to analyz-

ing real applications and exploring micro-architectural designs
in a full-system simulation environment in a tractable amount
of time. We described the new AutoGUI tool that allows us
to run interactive workloads by replaying user inputs on a
detailed simulator. We empirically showed that the SimPoint
methodology, typically used as a tool to project run-times of
bare-metal benchmarks, also worked well for projecting the
performance and overall sensitivities of real, multi-threaded
applications we tested running on Android. Using PCA, we
demonstrated that analyzing these real applications over bare-
metal benchmarks is important because they stress the underly-
ing system differently. By combining the use of SimPoint with
fractional factorial experimental design principles to discover
the experimental variables of interest, we are able to effectively
explore an otherwise intractable design space with a detailed
simulator. While our proposed methodology is quite general,
we demonstrated the flow on less-characterized smartphone
applications and benchmarks.

We plan to apply this flow for further detailed analysis of
real workloads. A current barrier for the analysis of many real
smartphone applications is the lack of peripherals required to
run them. We plan to build out our system model with compo-
nents like a camera, network interface controller, and a GPU
model to enable more meaningful simulation of applications
like social networking, augmented reality, and gaming.

REFERENCES
[1] J. C. Mogul, A. Baumann, T. Roscoe, and L. Soares, “Mind the gap:

Reconnecting architecture and os research,” in Proceedings of the 13th
USENIX Conference on Hot Topics in Operating Systems (HotOS),
2011, pp. 1–1.

[2] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
Simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[3] D. Genbrugge, S. Eyerman, and L. Eeckhout, “Interval simulation: rais-
ing the level of abstraction in architectural simulation,” in International
Symposium on High-Performance Computer Architecture Proceedings,
2010, pp. 307–318.

[4] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in ASPLOS-X, 2002, pp.
45–57.

[5] “GNU Xnee webpage,” http://www.gnu.org/software/xnee.
[6] “Robotium webpage,” http://code.google.com/p/robotium.
[7] “MonkeyRunner webpage,” http://developer.android.com/tools/help/

MonkeyRunner.html.
[8] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in

Proceedings of the Annual Conference on USENIX Annual Technical
Conference, 2005, pp. 41–41.

[9] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “SimPoint 3.0: Faster
and More Flexible Program Phase Analysis,” Journal of Instruction
Level Parallelism, vol. 7, no. 4, pp. 1–28, 2005.

[10] G. H. Dunteman, Principal Components Analysis. Sage Publications,
1989.

[11] A. Joshi, A. Phansalkar, L. Eeckhout, and L. K. John, “Measuring
benchmark similarity using inherent program characteristics,” Comput-
ers, IEEE Transactions on, vol. 55, no. 6, pp. 769–782, 2006.

[12] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K. John, and
K. De Bosschere, “Performance prediction based on inherent program
similarity,” in Proceedings of the 15th International Conference on
Parallel Architectures and Compilation Techniques, 2006, pp. 114–122.

[13] A. Phansalkar, A. Joshi, and L. K. John, “Analysis of redundancy
and application balance in the SPEC CPU2006 benchmark suite,” in
Proceedings of the 34th Annual International Symposium on Computer
Architecture (ISCA), 2007, pp. 412–423.

[14] R. Fisher, The Design of Experiments. Hafner, 1951.
[15] “NIST/SEMATECH e-Handbook of Statistical Methods,”

http://www.itl.nist.gov/div898/handbook/, 2012.
[16] J. K. Telford, “A brief introduction to design of experiments,” Johns

Hopkins APL Technical Digest, vol. 27, no. 3, p. 224, 2007.
[17] “AndEBench,” https://play.google.com/store/apps/.
[18] “The Embedded Microprocessor Benchmark Consortium,”

http://www.eembc.org/.
[19] “The Embedded CaffeineMark,” https://play.google.com/store/apps/.
[20] “RL Benchmark: SQLite,” https://play.google.com/store/apps/.
[21] A. Gutierrez, R. G. Dreslinski, T. F. Wenisch, T. Mudge, A. Saidi,

C. Emmons, and N. Paver, “Full-system analysis and characterization of
interactive smartphone applications,” in Proceedings of the 2011 IEEE
International Symposium on Workload Characterization (IISWC), 2011,
pp. 81–90.

[22] “Angry Birds,” https://play.google.com/store/apps/.
[23] “Kingsoft Office 5.3.4 (free),” https://play.google.com/store/apps/.
[24] “ARM Streamline Performance Analyzer,”

http://www.arm.com/products/tools/software-tools/ds-5/streamline.php.
[25] D. Sunwoo, “Visualizing gem5 via ARM DS-5 Streamline,” The First

Annual gem5 User Workshop in conjunction with MICRO-45, 2012.
[26] C. Kim, L. Euna, and K. Hyesoon, “The AM-Bench: An Android

Multimedia Benchmark Suite,” Georgia Institue of Technology, Tech.
Rep. GIT-CERCS-12-04, 2012.

[27] C. Kim, J.-H. Jung, T.-K. Ko, S. W. Lim, S. Kim, K. Lee, and W. Lee,
“MobileBench: A Thorough Performance Evaluation Framework for
Mobile Systems,” The First International Workshop on Parallelism in
Mobile Platforms (PRISM-1), in conjunction with HPCA-19, 2013.

[28] J. Clemons, H. Zhu, S. Savarese, and T. Austin, “MEVBench: A
Mobile Computer Vision Benchmarking Suite,” in IEEE International
Symposium on Workload Characterization (IISWC), 2011, pp. 91–102.

[29] A. B. de Oliveira, S. Fischmeister, A. Diwan, M. Hauswirth, and P. F.
Sweeney, “Why you should care about quantile regression,” in Proceed-
ings of the 18th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2013, pp.
207–218.

[30] C. Curtsinger and E. D. Berger, “Stabilizer: statistically sound perfor-
mance evaluation,” in Proceedings of the 18th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2013, pp. 219–228.

[31] J. J. Yi, D. J. Lilja, and D. M. Hawkins, “A statistically rigorous
approach for improving simulation methodology,” in Proceedings of
the 9th International Symposium on High-Performance Computer Ar-
chitecture (HPCA-9), 2003, pp. 281–291.

[32] R. L. Plackett and J. P. Burman, “The Design Of Optimum Multifac-
torial Experiments,” Biometrika, vol. 33, no. 4, pp. 305–325, 1946.

[33] B. C. Lee and D. M. Brooks, “Accurate and efficient regression
modeling for microarchitectural performance and power prediction,” in
Proceedings of the 12th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS),
2006, pp. 185–194.

122

