
© 2020 Arm Limited (or its affiliates)

Architectural
Support for Persistent

Memory Programming

William Wang, Arm Research
23 October 2020

2 © 2020 Arm Limited (or its affiliates)

Outline
• Persistent memory use cases

• Why do we (Arm) care about persistent memory?

• Memory persistency
• Do we have sufficient support in the Arm architecture for programming persistent memory?

• Memory consistency
• Why should you (programmers) care about memory consistency for sequential programs?

Note: Persistent memory refers to persistent uses of non-volatile memory (NVM) here.

© 2020 Arm Limited (or its affiliates)

Persistent Memory
Use Cases

Why do we care about persistent memory?

4 © 2020 Arm Limited (or its affiliates)

NVM Is Real

1970

1955-1975 2019

Magnetic Core Memory

DRAM

3DXP

1961

SRAM

1984

Flash Memory

5 © 2020 Arm Limited (or its affiliates)

NVM Augments SRAM, DRAM, NOR, and NAND
In Embedded, Client, and Infrastructure

Arm MUSCA-S1 Board with MRAM at 28nm in 2019 Nokia Asha Smartphone with Micron PCM in 2012 CXL Connected Persistent Memory in Infrastructure

6 © 2020 Arm Limited (or its affiliates)

Non-Volatile Memory Opportunities

Core

L1
i

L1
d

L2 LL
C

Ct
rlX

Off-chip Usage

Larger & cheaper DRAM

Ultra-fast Storage

Converged Memory & Storage

On-chip Usage

LL
C

Larger Caches

Core

SR
AM

Fl
as

h
Mem

Unify Flash & SRAM

Application-profile
(servers, phones, ..)

Embedded-profile
(energy harvesters)

PEs

SR
AM

Mem

ASIC
(AI accelerators)

Huge On-chip Mem

7 © 2020 Arm Limited (or its affiliates)

Persistent Use Cases
Beyond ’More Memory’

• Byte addressable, denser than DRAM
• Today: new memory technologies

offering density and cost improvements
over DRAM

• Tomorrow: unlock performance through
single memory for storage and compute

TCO/Capacity
§ Endurance
§ Caching

DRAM

NVM NVMDRAM

Persistency
§ Failure atomicity
§ Persist ordering
§ Crash recovery
§ Programming models
§ ISA & uarch support

More Mem
Denser than DRAM

Persistent Mem
Non-Volatile

Unlock more perf out
of cheaper memory

In-mem DBs, then
other apps

- Data analytics

- ML training

- Financial

- HPC

Today Tomorrow

8 © 2020 Arm Limited (or its affiliates)

Other Use Cases

Server, Networking, Edge
Databases, i.e., redo logging, in-memory index

Data analytics, i.e., in-memory index

HPC and ML training, i.e., checkpointing

Animation films, i.e., append only writes

Financial pub/sub service, i.e., KDB+

Serverless restart time

Client
Restart time (apps code and shared libs in PM)

SQLite replacement (i.e., with a hashmap)

Energy efficiency (fast sleep & restore)

USB computer sticks (fast restart)

Mobile content creation (video editing)

Mobile gaming (fast loading)

IoT, Embedded, Auto
Intermittent computing, i.e., forward progress

despite frequent power cycles

Industrial IoT, i.e., all data used for decision
making need to be persisted

fast restart, fast save

Simulator: https://github.com/UoS-EEC/fused

© 2020 Arm Limited (or its affiliates)

Memory Persistency

Do we have sufficient support in the Arm ISA for
programming persistent memory?

10 © 2020 Arm Limited (or its affiliates)

System Assumption

§ Point of Persistence (PoP) at the
persistent memory module or the
memory controller WPQ
• Contents in the power-fail protection

domain will be saved upon power failure

§ Caches and cores are still in the
volatile domain
• Contents will be lost upon power failure

§ Persistency < Consistency (behind)
• Stores need to be drained from volatile

caches to PoP explicitly by software to
sync persistency w. consistency

Core 0 Core 1

L1 L1

L2 L2

L3

Memory
Controller

Persistent Memory

WPQ
Power-fail
protection
domain (ADR)
x86

arm

Consistency

Persistency

PoP: Point of Persistence

ADR : Asynchronous DRAM Refresh

WPQ: Write Pending Queue

11 © 2020 Arm Limited (or its affiliates)

Architectural Support to Sync Visibility & Persistency

Core L1D L2 LLC MC PM

PoP PoDPPoCV

DC CVAP

DC CVADP

PoCV: Point of Concurrent Visibility

PoP: Point of Persistence

PoDP: Point of Deep Persistence

ADR : Asynchronous DRAM Refresh

DSB: Data Synchronization Barrier

ADR

PoPPoP

Armx86

DC CVAP in Armv8.2-A and DC CVADP in Armv8.5-A

Barriers (DSB) to guarantee completion of DC CVA[D]P cache maintenance operations

12 © 2020 Arm Limited (or its affiliates)

Global Visibility Order

P0
STR W0,[X1]
STR W2,[X3]

time

b: Wy = 1

a: Wx = 1

Thread 0

po

P0
STR W0,[X1]
DMB.ST
STR W2,[X3]

b: Wy = 1

a: Wx = 1

Thread 0

dmb

Global Visibility

time

Global Visibility

Wx = 1 Wy = 1 Wx = 1 Wy = 1

DMB: Data Memory Barrier

DMB.ST: Store barrier

13 © 2020 Arm Limited (or its affiliates)

View of the NVM: Persist Order

P0
STR W0,[X1]
STR W2,[X3]

time

b: Wy = 1

a: Wx = 1

Thread 0

po

P0
STR W0,[X1]
DMB.ST
STR W2,[X3]

b: Wy = 1

a: Wx = 1

Thread 0

dmb

Global Visibility

time

Global Visibility

Wx = 1Wy = 1

Persistence Persistence

Wx = 1 Wy = 1

Wy = 1 Wx = 1Wx = 1 Wy = 1

14 © 2020 Arm Limited (or its affiliates)

Enforcing Persist Order

P0
STR W0,[X1]
DC.CVAP [X1]
DSB
STR W2,[X3]

time

Global Visibility

Wx = 1 Wy = 1

Persistence

Wx = 1 Wy = 1

b: Wy = 1

a: Wx = 1

Thread 0

dmb pers

P0
STR W0,[X1]
DC.CVAP [X1]
DSB

P1
LDR W0,[X1]
DMB
STR W2, [X3]
DC.CVAP [X3]
DSB

c: Wy = 1

a: Wx = 1

Thread 0

dmb

Thread 1

b: Rx = 1
rfe

Global Visibility

Wx = 1 Wy = 1Rx = 1

Persistence

Wx = 1 Wy = 1

pers?

pers?

DSB: Data Synchronization Barrier

15 © 2020 Arm Limited (or its affiliates)

Challenge: Data Loss in Concurrent Linked List

• Producer B observes A’s updates, but
cannot / does not enforce the persists

• The inter-thread“read of non-
persistent writes” problem

1. if(CAS(&last->next, next, node)) {
2. Persist(&last->next);
3. DSB
4. }

1

next

2

next

3

next

4

nextCAS

CAS
Persist

Persist

Producer A

insert
Producer B

insert

16 © 2020 Arm Limited (or its affiliates)

Solution
• Basic idea: delay consumer’s persist

operation until producer’s persist
operation is done

• Various arch options
• Delay producer’s visibility until persistence is

done

P0
STR W0,[X1]
DC.CVAP [X1]
DSB

P1
LDR W0,[X1]
DMB
STR W2, [X3]
DC.CVAP [X3]
DSB

c: Wy = 1

a: Wx = 1

Thread 0

dmb

Thread 1

b: Rx = 1
rfe

Global Visibility

Persistence

Wx = 1

Wx = 1 Wy = 1Rx = 1

Wy = 1

17 © 2020 Arm Limited (or its affiliates)

Solution
• Basic idea: delay consumer’s persist

operation until producer’s persist
operation is done

• Various arch options
• Delay producer’s visibility until persistence is

done

• New instructions for combining persist
and store for synchronizing stores
• A variant is to detect stores to persistent regions at

address translation and automatically persist

P0
STR W0,[X1]
DC.CVAP [X1]
DSB

P1
LDR W0,[X1]
DMB
STR W2, [X3]
DC.CVAP [X3]
DSB

c: Wy = 1

a: Wx = 1

Thread 0

dmb

Thread 1

b: Rx = 1
rfe

Global Visibility

Wx = 1 Wy = 1Rx = 1

Persistence

Wx = 1Wy = 1

18 © 2020 Arm Limited (or its affiliates)

Persistent Transitive Stores to Synchronize Visibility & Persistency

Core
1 L1D MC PM

PoP PoDPPoCV

DC CVAP

DC CVADP

PoCV: Point of Concurrent Visibility

PoP: Point of Persistence

PoDP: Point of Deep Persistence

Core
0 L1D

LLC

MC DRAM

Pe
rs

is
te

nt
 T

ra
ns

iti
ve

 S
to

re
s

19 © 2020 Arm Limited (or its affiliates)

In Software

• Readers persist all locations read -> bloat, slow
• Tell reader to persist / to wait
• Single out-of-band location -> scalability??
• Multiple out-of-band locations -> hello mini-

STM ?!?
• Borrow payload -> steals payload bits

P0 P1

persist(X)
CAS(X ,P, ..)
produce(P)

modify(Q, p)
persist(Q)

p= read(X)

20 © 2020 Arm Limited (or its affiliates)

In Software

• Readers persist all locations read -> bloat, slow
• Tell reader to persist / to wait
• Single out-of-band location -> scalability??
• Multiple out-of-band locations -> hello mini-

STM ?!?
• Borrow payload -> steals payload bits

P0 P1

persist(X)
CAS(X ,P, ..)
produce(P)

modify(Q, p)
persist(Q)

p= read(X)
persist(X)

21 © 2020 Arm Limited (or its affiliates)

In Software

• Readers persist all locations read -> bloat, slow
• Tell reader to persist / to wait
• Single out-of-band location -> scalability??
• Multiple out-of-band locations -> hello mini-

STM ?!?
• Borrow payload -> steals payload bits

P0 P1

persist(X)
CAS(X ,P, ..)
produce(P)

modify(Q, p)
persist(Q)

p= read(X)
check(Y)

notify(Y)

rfe

“There is always a software way around the problem if you are
aware of it, but that is not a reliable solution. The best solution
is to design processors so that a load from a persistent memory
location will only see data that is persistent.”

- Mario Wolczko and Bill Bridge (Oracle)

Source: https://medium.com/@mwolczko/non-volatile-memory-and-java-part-2-c15954c04e11

22 © 2020 Arm Limited (or its affiliates)

Summary: Persistent Transitive Stores
• Persistent memory introduces a new level of reasoning
• Arm ISA extensions for flushing to point of (deep) persistence: DC CVA[D]P

• Arm v8.2 DC CVAP, Arm v8.5 DC CVADP

• Simple persist operations do not allow transitive ordering of persists
• Tricky case closing store of lock-free section
• Extending the ISA (and uarch) to synchronize visibility and persist orders

23 © 2020 Arm Limited (or its affiliates)

Architectural Support for Memory

Load/Store Exclusives Barriers [A|L] Atomics PM HTM

Persistent Transitive Stores

CMO

CMO: Cache Maintenance Operation

PM: Persistent Memory

HTM: Hardware Transactional Memory

24 © 2020 Arm Limited (or its affiliates)

• Lock-free data structures for filesystems, databases, k-v stores, and caching tiers

• Synchronization primitives in languages, libraries, runtimes and compilers for PM

Use Cases for Persistent Atomics

Software Stacks Synchronization Primitives Examples

Applications Locks, lock-free atomics, STM MySQL, Tomcat, Nginx (sync intensive)

Runtimes • Interpret language functions to runtime builtin implementations
• Concurrent GC in runtime implementations

• Synchronized in Java to intrinsic lock or monitor lock
• v8, OpenJDK, go-runtime

Kernels spinlock, ticket spinlock, mcs queued spinlock, clh queued spinlock
mutex, semaphore, reader-writer lock, read-copy-update

Linux kernel

Languages Locks and atomics: Java, C11/C++, C#, Golang, JS, NodeJS, WASM;
TM: C/C++

Synchronized in Java/C++, lock in C#

Libraries mutexes, semaphores pthreads, Windows threads

Compilers atomics in languages get mapped to compiler builtin implementations GCC __atomic_ Builtins, LLVM __atomic_

ISA PCAS[A|L], PSWP[A|L], P[LD|ST]ADD[A|L] Persistent atomics

Data Structures Example Implementations Applications

B+ Trees BZTree, and Crab-tree, Masstree, noveLSM, FAST-FAIR B+-Tree, WORT,
FPTree, NV-tree, WB+-Tree, B+-Tree, CDDS B-Tree

Filesystems and databases: Microsoft Hekaton, HANA, Timesten,
SQLite, LevelDB/RocksDB/Cassandra (LSM Tree), NOVA, ext4-DAX

Hashmaps NVC-hashmap, CCEH, LevelHashing, Dali, PFHT Key-value stores: Redis, Memcached, Pelikan

Queues LogQueue Persistent log queues: Oracle DB, SQL server

Skiplists NV-skiplist Databases and KV stores: MemSQL

25 © 2020 Arm Limited (or its affiliates)

Concurrency on Persistency Memory : It’s Complicated

“ We also explain that atomic
operations cannot be used inside
a [PMDK] transaction while
building lock-free algorithms
without transactions. This is a
very complicated task if your
platform does not support
eADR.”

Source: https://link.springer.com/chapter/10.1007/978-1-4842-4932-1_14

© 2020 Arm Limited (or its affiliates)

Memory Consistency

Why should you care about memory consistency
for sequential programs?

27 © 2020 Arm Limited (or its affiliates)

Example: Adding a Node to a Linked List

root Node
headp

newNode

1

nextp

23

3

root Node
headp

newNode

1

nextp

23

3

Allocate

Initialize

Publish

PM Allocate

Initialize & Persist
Publish & Persist

28 © 2020 Arm Limited (or its affiliates)

eADR Simplifies Persistent Programming, but Not Sufficient

Core 0 Core 1

L1 L1

L2 L2

L3

MC

PM

Power-fail
protection
domain
(eADR)

• CPU cache hierarchy in the power-
fail protection domain (PoP)
• Contents will be saved upon power

failure

• Persistency == Consistency
• Concurrent programs ✓
• Is that sufficient for sequential

programs?
• Globally visible stores in the cache

hierarchy will be persistent too
• No need to DC CVAP
• No need to use barriers?

– No, simple sequential programs need to
reason about memory consistency

Consistency
Persistency

29 © 2020 Arm Limited (or its affiliates)

Arm’s Weak Memory Model: W->W Reordering Allowed

P1 can read a stale copy of A, as str flag=0 can get
executed before str A=1.

Use DMB (or stlr) between the two stores on P0 to
serialize the two stores.

DMB.ST

DMB.SYS

Even though caches are in the PoP, no need to PERSIST, but
DMB is needed.

Non-TSO needs the first DMB.ST for sequential programs
correctness with persistent memory. [DMB.ST]

TSO & non-TSO need barriers for visibility due to store
buffering and to prevent loads bypassing stores. [DMB.SYS]

P0
str A=1
str flag=0

P1
while(flag==1){};
print A

30 © 2020 Arm Limited (or its affiliates)

Solutions – Applications, Compilers, Languages, ISA, or uArch?
• All such sequential programs get patched (w. DMB) to run on systems with PM
• Compilers implement a stricter memory model if the target architecture has a weaker

memory model.
• By disallowing certain reorderings (such as WAW/RAW) in compiler passes, and by inserting memory

barriers (including store releases) in the right places

• Languages provide an option to specify stricter memory models (such as C++), but
legacy code will need to be ported to leverage the feature.

• Tighten memory models, is that an option?
• Architecture supports stricter memory model extensions
• Stricter microarchitectural implementations that disallow reordering stores

• Extend power-fail protection to store buffers
• As instructions are committed in order, despite being executed OoO

SW
HW

31 © 2020 Arm Limited (or its affiliates)

Barriers Can Be Expensive

OpenJDK inserted barrier

Performance on m6g [N1] got improved
30% after removing the store barriers for
objects initialization.

DMB ishst DMB can be expensive

Object[] tmp = new Object[localArrlen];
bh.consume(tmp);DMB.st

0x0000ffff9426def4: dmb ishst

CPU Normally Remove store barriers

m6g.16xlarge 22805.389 ± 334.201
ns/op [Average]

15942.065 ± 63.785
ns/op [Average]

https://jira.arm.com/browse/INFPRF-674
https://jira.arm.com/browse/INFPRF-674
https://jira.arm.com/browse/INFPRF-674
https://jira.arm.com/browse/INFPRF-674

32 © 2020 Arm Limited (or its affiliates)

No Barriers Get Inserted by Compilers
On Arm’s Weak Memory Models

Source Code gcc v7.4.0 on Centriq2400

gcc v5.4.0 on ThunderX2

“I have thought about this in the past and for (A) if they
are allowed to re-order at all then this is a problem
regardless of whether they do or not (B) can we
reliably detect the type of data structure being used
so that we can insert barriers automatically, I would
say in some cases yes but in others no. The
uncertainty will be the problem.”

NOTES: Both the compiler and the CPU can reorder stores. Barriers
prevent CPU from reordering. However, barriers are not designed to
prevent compilers from reordering, and should not be used for this
purpose due to runtime artifact.

For the sequential program discussed, compiler reordering should not
break the sequential execution mental model for developers. Therefore
no compiler reordering should be allowed, otherwise the compiler
optimization would break an important principle. Compiler barriers have
been introduced as a result, such as _barrier() in the kernel, or asm
volatile (“”:::”memory”), that prevents compiler from reordering, and
with no runtime performance impact.

However, OoO CPU store buffers can still reorder stores and should be
prevented with CPU barriers.

33 © 2020 Arm Limited (or its affiliates)

uArch Implementations vs. Arch Specifications
• DMBST/STLR must be used in the producer thread

• Stores are rarely reordered on TX and HI, a bit more frequent on QC
– 10 (TX/HI) in 100M, 0.5M(QC) in 100M

Notes:
Hi = Hi1616, 64C, A72
QC = QC2400, 48C
TX = TX2-9800, 2S*32C*4T

P0
str A=1
str flag=0

P1
while(flag==1){};
print A

34 © 2020 Arm Limited (or its affiliates)

Software Porting from TSO to WMM
Barriers Are Hard to Get Right

• DBT (x86->Arm)
• Need to add fences (STLR/LDAR, DMB)

– Hard problem to identify all cases, if not overusing

• Applications porting from TSO -> WMM
• Recompile, if w. language-level consistency model
• Add fences (STLR/LDAR, DMB), if not

– Tedious, easy to overuse or underuse barriers

• Silicon can support x86-TSO and WMM
• Set an MSR to get x86-TSO dynamically
• So the code in the middle would run okay

// Producer
*data = 1;
atomic_store_explicit(&flag, 1, memory_order_release)

// Consumer
if (atomic_load_explicit(&flag, 1, memory_order_acquire))

assert(*data != 0);

// Producer
mov 0(rdx),rax
mov 8(rdx),rbx

// Consumer
mov rax,8(rdx)
mov rbx,0(rdx)

// Producer
str r1,[r2]
stlr r4,[r3]

// Consumer
ldar r1,[r3]
ldr r4,[r2]

armv8 x86

x86 to armv8

A compiler targeting either architecture directly would produce
correct code. However, binary translation that does not account
for differences in consistency models would lead to the invalid
outcome becoming observable!
DBT needs to insert fences, otherwise tricky bugs get introduced.
Or, processors support TSO as well.

// Producer
str r1,[r2]
str r4,[r3]

// Consumer
ldr r1,[r3]
ldr r4,[r2]

WMM
RC

TSO

35 © 2020 Arm Limited (or its affiliates)

Extend Power-fail Protection to Store Buffers

Core Core

L1 L1

Power-fail
protection
domain
(eADR+)
Persistency
domain

• CPU store buffers in the power-fail
protection domain (PoP) too
• Contents will be saved to PoP

• Stores are executed OoO but
committed in order
• No need to order w. barriers explicitly

• Consistency == Persistency
• Concurrent programs ✓

• Persistency > Consistency (ahead)
• Persistency at SB

– WMM stores get persisted in order, despite can be made visible OoO,
barriers would already have been needed for concurrency.

• Sequential programs continue to
execute correctly without barriers

– Language support may be needed to prevent compiler reordering

SB SB Store
forwarding

Consistency
domain

Other-MCA

[Arm|x86]

Consistency

Persistency

36 © 2020 Arm Limited (or its affiliates)

Microarchitectural Support to Sync Visibility & Persistency

Core
SB

L1D L2 LLC MC PM

LOAD

STORE

PoP PoDPPoCVPoSV

DC CVAP

DC CVADP

x86Arm
BBB

MRAM/CeRAM

PoSV: Point of Sequential Visibility

PoCV: Point of Concurrent Visibility

PoP: Point of Persistence

PoDP: Point of Deep Persistence

BBB: Battery-Backed Buffers

ADReADR

<= Microarchitectural Support

Architectural Support =>

© 2020 Arm Limited (or its affiliates)

Summary

38 © 2020 Arm Limited (or its affiliates)

Summary
• Problems

• Persist ordering across threads
• Persist ordering within a thread

• Solutions [*]
• Persistent transitive stores
• Battery-backed buffers

• Feedback
• Please send to william.wang@arm.com

Persistent transitive stores Battery-backed buffers
Performance
Improvement Small Big
Programmability
Concurrency Yes Yes
Failure atomicity No No
Persist ordering Yes Yes
Crash recovery No No
Persistent memory management No No
Portability High Low
Implementation
ISA architecture (instructions) Yes No
System architecture (registers) No Yes
Microarchitecture Yes Yes
Interconnect Yes No

[*] This is research and not (yet) part of a committed architecture/product.

© 2020 Arm Limited (or its affiliates)

Other Persistent
Memory Programming

Challenges

40 © 2020 Arm Limited (or its affiliates)

Persistent Memory Programming Challenges
• Persist ordering

• Relaxed memory persistency models [arch & uarch]
• Weak memory consistency models [sw & arch] – with eADR

• Failure atomicity
• PSTM [sw]
• HW logging [uarch & arch]

• Addressing/crash recovery
• Persistent pointers [sw & arch]
• Pointer swizzling at crash recovery [sw]

• Persistent memory management
• Metadata crash consistency, GC [sw]

• Concurrency
• Persistent transitive stores [arch]
• PHTM/PSTM [uarch/sw]
• Locking [sw]

Se
qu

en
tia

lP
ro

gr
am

s

Co
nc

ur
re

nt
Pr

og
ra

m
s

M
-c

la
ss

A-
cl

as
s

M
-c

la
ss

41 © 2020 Arm Limited (or its affiliates)

Addressing the Persistent Programming Challenges

Programmability

Performance

Lock-free

HTM

Fine-grained Locking

: concurrent
: concurrent & durable

PHTM

SFR

PCAS

Whole-System
Persistence

Programmability Performance

Persistent CAS as drop-in replacement for CAS
[SPAA’19]
WSP for IoT apps [DAC’19, ISPASS’20]
Compiler instrumented failure atomicity for SFR
[PLDI’18]

Persistent HTM as drop-in replacement for HTM
[US Patent 10,445,238]

Relaxed memory persistency models
[ISCA’20]
Hardware accelerations –
BBB[HPCA’21], HW logging

Software optimizations

42 © 2020 Arm Limited (or its affiliates)

Languages Support for Persistent Memory
Language Applications Extensions Failure

atomicity
Addressing Memory

Management
Concurrency

C Oracle DB, SAP
HANA, MS Hekaton,
Redis

NVM-Direct (Oracle), PMDK
(Intel)

STM Fat pointers metadata crash
consistent

Locking

C++ SQL Server PMDK (Intel), STL containers,
ATLAS(HPE)

STM
CS-based FASE

Fat pointers
(P0773R0)

metadata crash
consistent

Locking

Go Kubernetes, Docker,
Redis

Go-pmem (VMWare) STM Pointer
swizzling at
recovery

pnew, pmake,
GC, heap
metadata crash
consistent

Locking

Java Cassandra,
ActiveMQ

OpenJDK JEP-352, mashona
(RedHat), PCJ (Intel)

More info: William Wang et.al. , Language Support for Memory Persistency, IEEE MICRO Top-picks 2019

43 © 2020 Arm Limited (or its affiliates)

OS Support for PM - Persistent Memory Objects

Virtual Memory

Addressing Protection, Translation and Persistence Holistically, along w. PM & Capabilities

YES
• Same VA to apps, ease of prog.

• No overlays to move data from
storage to memory

• Illusion of large PA to all apps
• VA >> PA w. demand paging

NO
• High translation overheads w. TB

NVMM

• Page tables won’t survive reboots
• Sharing across processes
• Page granularity protection,

mapping and migration
• Size of memory no longer a problem

YES
• Objects survive reboots
• Relocation better than VM
• No MM <-> FS

serialization/deserialization
• No fixed page granularity translations
• Fine-grained protection
• Inter-process sharing (PGAS)
• No context switch TLB flushes

NO?
• Distributed systems (naming)
• Performance? (TLB made VM usable)

• Multics (1965)
• IBM i [OS/400] (1988)
• Opal (1995)
• Twizzler (2020)

Single-level Store Example SAS OS
Single Address Space OS (SAS OS)

Arm Capabilities the Morello Board: https://developer.arm.com/architectures/cpu-architecture/a-profile/morello

“VM was invented in a time of scarcity, is it still a good
idea? We should rethink design decisions based on new
realities. Some choices we made may be less relevant,
and paths not taken might be more appropriate today.”

- Charles Thacker (Microsoft)
2009 Turing Award Speech at ISCA’2010

© 2020 Arm Limited (or its affiliates)

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

ध"यवाद
ارًكش

ধন#বাদ
הדות

Thanks Stephan Diestelhorst, Richard Grisenthwaite, Nigel Stephens, Robert Dimond, Stuart Biles,
David Weaver, Matt Horsnell, Thomas Grocutt, Wendy Elsasser, Nikos Nikoleris, Andreas Sandberg,
Joseph Yiu, Rod Crawford, Andrew Sloss, Mitch Ishihara, Dave Rodgman, Gustavo Petri, Jade
Alglave, Will Deacon, Alex Waugh, Ola Liljedahl, Magnus Bruce, Bobby Batacharia, Travis Walton,
David Bull, Shidhartha Das, Shiyou Huang, Sivert Sliper, Mohammad Alshboul, Mike Filippo, Gagan
Gupta, Jay Lorch, Bret Toll, Ben Chaffin, Nagi Aboulenein, Dai Zong, Jonathan Halliday, Hans-J.
Boehm, Pedro Ramalhete, Virendra Marathe, and Mario Wolczko for their valuable feedback and
insightful discussions.

